A Chandra search for the pulsar wind nebula around PSR B1055-52
(2015)
Radio Galaxy Zoo: host galaxies and radio morphologies derived from visual inspection
(2015)
Counting quasar–radio source pairs to derive the millijansky radio luminosity function and clustering strength to z = 3.5
Monthly Notices of the Royal Astronomical Society Oxford University Press 452:3 (2015) 2692-2699
Abstract:
We apply a cross-correlation technique to infer the S > 3 mJy radio luminosity function (RLF) from the NRAO VLA Sky Survey (NVSS) to z ∼ 3.5. We measure Σ the over density of radio sources around spectroscopically confirmed quasars. Σ is related to the space density of radio sources at the distance of the quasars and the clustering strength between the two samples, hence knowledge of one constrains the other. Under simple assumptions we find Φ ∝ (1 + z)3.7 ± 0.7 out to z ∼ 2. Above this redshift the evolution slows and we constrain the evolution exponent to <1.01 (2σ). This behaviour is almost identical to that found by previous authors for the bright end of the RLF potentially indicating that we are looking at the same population. This suggests that the NVSS is dominated by a single population; most likely radio sources associated with high-excitation cold-mode accretion. Inversely, by adopting a previously modelled RLF we can constrain the clustering of high-redshift radio sources and find a clustering strength consistent with r0 = 15.0 ± 2.5 Mpc up to z ∼ 3.5. This is inconsistent with quasars at low redshift and some measurements of the clustering of bright FR II sources. This behaviour is more consistent with the clustering of lower luminosity radio galaxies in the local Universe. Our results indicate that the high-excitation systems dominating our sample are hosted in the most massive galaxies at all redshifts sampled.The formation history of massive cluster galaxies as revealed by CARLA
Monthly Notices of the Royal Astronomical Society Oxford University Press 452:3 (2015) 2318-2336
Abstract:
We use a sample of 37 of the densest clusters and protoclusters across 1.3 ≤ z ≤ 3.2 from the Clusters Around Radio-Loud AGN (CARLA) survey to study the formation of massive cluster galaxies. We use optical i′-band and infrared 3.6 and 4.5 μm images to statistically select sources within these protoclusters and measure their median observed colours; 〈i′ − [3.6]〉. We find the abundance of massive galaxies within the protoclusters increases with decreasing redshift, suggesting these objects may form an evolutionary sequence, with the lower redshift clusters in the sample having similar properties to the descendants of the high-redshift protoclusters. We find that the protocluster galaxies have an approximately unevolving observed-frame i′ − [3.6] colour across the examined redshift range. We compare the evolution of the 〈i′ − [3.6]〉 colour of massive cluster galaxies with simplistic galaxy formation models. Taking the full cluster population into account, we show that the formation of stars within the majority of massive cluster galaxies occurs over at least 2 Gyr, and peaks at z ∼ 2–3. From the median i′ − [3.6] colours, we cannot determine the star formation histories of individual galaxies, but their star formation must have been rapidly terminated to produce the observed red colours. Finally, we show that massive galaxies at z > 2 must have assembled within 0.5 Gyr of them forming a significant fraction of their stars. This means that few massive galaxies in z > 2 protoclusters could have formed via dry mergers.Neutral hydrogen absorption towards Fast Radio Bursts
Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press (OUP) 451:1 (2015) l75-l79