Phase-resolved Faraday rotation in pulsars

ArXiv 0903.5511 (2009)

Authors:

A Noutsos, A Karastergiou, M Kramer, S Johnston, BW Stappers

Abstract:

We have detected significant Rotation Measure variations for 9 bright pulsars, as a function of pulse longitude. An additional sample of 10 pulsars showed a rather constant RM with phase, yet a small degree of RM fluctuation is visible in at least 3 of those cases. In all cases, we have found that the rotation of the polarization position angle across our 1.4 GHz observing band is consistent with the wavelength-squared law of interstellar Faraday Rotation. We provide for the first time convincing evidence that RM variations across the pulse are largely due to interstellar scattering, although we cannot exclude that magnetospheric Faraday Rotation may still have a minor contribution; alternative explanations of this phenomenon, like erroneous de-dispersion and the presence of non-orthogonal polarization modes, are excluded. If the observed, phase-resolved RM variations are common amongst pulsars, then many of the previously measured pulsar RMs may be in error by as much as a few tens of rad m-2.

SPACE: The spectroscopic all-sky cosmic explorer

Experimental Astronomy 23:1 (2009) 39-66

Authors:

A Cimatti, M Robberto, C Baugh, SVW Beckwith, R Content, E Daddi, G De Lucia, B Garilli, L Guzzo, G Kauffmann, M Lehnert, D MacCagni, A Martínez-Sansigre, F Pasian, IN Reid, P Rosati, R Salvaterra, M Stiavelli, Y Wang, MZ Osorio, M Balcells, M Bersanelli, F Bertoldi, J Blaizot, D Bottini, R Bower, A Bulgarelli, A Burgasser, C Burigana, RC Butler, S Casertano, B Ciardi, M Cirasuolo, M Clampin, S Cole, A Comastri, S Cristiani, JG Cuby, F Cuttaia, A De Rosa, AD Sanchez, M Di Capua, J Dunlop, X Fan, A Ferrara, F Finelli, A Franceschini, M Franx, P Franzetti, C Frenk, JP Gardner, F Gianotti, R Grange, C Gruppioni, A Gruppuso, F Hammer, L Hillenbrand, A Jacobsen, M Jarvis, R Kennicutt, R Kimble, M Kriek, J Kurk, JP Kneib, O Le Fevre, D MacChetto, J MacKenty, P Madau, M Magliocchetti, D Maino, N Mandolesi, N Masetti, R McLure, A Mennella, M Meyer, M Mignoli, B Mobasher, E Molinari, G Morgante, S Morris, L Nicastro, E Oliva, P Padovani, E Palazzi, F Paresce, AP Garrido, E Pian, L Popa, M Postman, L Pozzetti, J Rayner, R Rebolo, A Renzini, H Röttgering, E Schinnerer, M Scodeggio, M Saisse, T Shanks, A Shapley, R Sharples

Abstract:

We describe the scientific motivations, the mission concept and the instrumentation of SPACE, a class-M mission proposed for concept study at the first call of the ESA Cosmic-Vision 2015-2025 planning cycle. SPACE aims to produce the largest three-dimensional evolutionary map of the Universe over the past 10 billion years by taking near-IR spectra and measuring redshifts for more than half a billion galaxies at 0∈<∈z∈<∈2 down to AB~23 over 3π sr of the sky. In addition, SPACE will also target a smaller sky field, performing a deep spectroscopic survey of millions of galaxies to AB~26 and at 2∈<∈z∈<∈10∈+. These goals are unreachable with ground-based observations due to the ≈500 times higher sky background (see e.g. Aldering, LBNL report number LBNL-51157, 2001). To achieve the main science objectives, SPACE will use a 1.5 m diameter Ritchey-Chretien telescope equipped with a set of arrays of Digital Micro-mirror Devices covering a total field of view of 0.4 deg2, and will perform large-multiplexing multi-object spectroscopy (e.g. ≈6000 targets per pointing) at a spectral resolution of R~400 as well as diffraction-limited imaging with continuous coverage from 0.8 to 1.8 μm. Owing to the depth, redshift range, volume coverage and quality of its spectra, SPACE will reveal with unique sensitivity most of the fundamental cosmological signatures, including the power spectrum of density fluctuations and its turnover. SPACE will also place high accuracy constraints on the dark energy equation of state parameter and its evolution by measuring the baryonic acoustic oscillations imprinted when matter and radiation decoupled, the distance-luminosity relation of cosmological supernovae, the evolution of the cosmic expansion rate, the growth rate of cosmic large-scale structure, and high-z galaxy clusters. The datasets from the SPACE mission will represent a long lasting legacy for the whole astronomical community whose data will be mined for many years to come. © 2008 Springer Science+Business Media B.V.

Searching for substellar companions of young isolated neutron stars*

Astronomy & Astrophysics EDP Sciences 496:2 (2009) 533-545

Authors:

B Posselt, R Neuhäuser, F Haberl

Future investigations of GPS and CSS radio sources with LOFAR

Astronomische Nachrichten 330 (2009) 297-297

Authors:

IAG Snellen, HJA Röttgering, PD Barthel, PN Best, M Brüggen, JE Conway, MJ Jarvis, MD Lehnert, GK Miley, R Morganti

The complex polarization angles of radio pulsars: orthogonal jumps and interstellar scattering

ArXiv 0901.1826 (2009)

Abstract:

Despite some success in explaining the observed polarisation angle swing of radio pulsars within the geometric rotating vector model, many deviations from the expected S-like swing are observed. In this paper we provide a simple and credible explanation of these variations based on a combination of the rotating vector model, intrinsic orthogonally polarized propagation modes within the pulsar magnetosphere and the effects of interstellar scattering. We use simulations to explore the range of phenomena that may arise from this combination, and briefly discuss the possibilities of determining the parameters of scattering in an effort to understand the intrinsic pulsar polarization.