Disc-jet coupling in the 2009 outburst of the black hole candidate H1743-322
(2012)
A 650 GHz unilateral finline SIS mixer fed by a multiple flare-angle smooth-walled horn
IEEE Transactions on Terahertz Science and Technology 2:1 (2012) 40-49
Abstract:
We report the design and successful operation of an superconductor- insulator-superconductor (SIS) mixer operating near the superconducting gap of niobium. A key feature of this design is the employment of a unilateral finline taper to transform the waveguide modes to microstrip signals. This transition is easy to design since it can be rigorously modeled, and also easy to fabricate being a single-layer structure. We will show that unilateral finline mixers have important advantages at THz frequencies since they exhibit wideband operation at both radio frequency (RF) and intermediate frequency (IF), allow elegant on-chip integration of the mixer circuits and result in an extremely simple mixer block that does not require a backshort or any mechanical tuners. The mixer we describe below is fed by a multiple flare-angle smooth-walled horn which exhibits beam pattern characteristic comparable to the conventional corrugated horn and yet is much easier to fabricate. In this paper, we shall present a brief discussion of the testing of the multiple flare-angle horn and detailed description of the design and testing of the mixer, covering ∼100 GHz bandwidth centered at 650 GHz. In particular, we will present full electromagnetic design description of the mixer chip including the superconducting effects, and the heterodyne properties of the mixer using quantum mixing theory. Mixer performance tests that we carried out from 595 to 702 GHz gave a best receiver noise temperature of 145 K at 600 GHz, corrected for a 75 μm beam splitter. Finally, we performed a thorough analysis of the mixer performance, comparing the experimental results with theoretical models. Our investigation demonstrated that unilateral finline mixers fed by a multiple flare-angle horn can yield performance comparable to conventional designs, hence are suitable for large format mixer array at THz frequencies. © 2011 IEEE.Assessing luminosity correlations via cluster analysis: Evidence for dual tracks in the radio/X-ray domain of black hole X-ray binaries
Monthly Notices of the Royal Astronomical Society 423:1 (2012) 590-599
Abstract:
The radio/X-ray correlation for hard and quiescent state black hole X-ray binaries is critically investigated in this paper. New observations of known sources, along with newly discovered ones (since 2003), have resulted in an increasingly large number of outliers lying well outside the scatter about the quoted best-fitting relation. Most of these outliers tend to cluster below the best-fitting line, possibly indicative of two distinct tracks which might reflect different accretion regimes within the hard state. Here, we employ and compare state of the art data clustering techniques in order to identify and characterize different data groupings within the radio/X-ray luminosity plane for 18 hard and quiescent state black hole X-ray binaries with nearly simultaneous multiwavelength coverage. Linear regression is then carried out on the clustered data to infer the parameters of a relationship of the form ℓr=α+βℓx through a Bayesian approach (where ℓ denotes logarithmic luminosities). We conclude that the two-cluster model, with independent linear fits, is a significant improvement over fitting all points as a single cluster. While the upper track slope (0.63 ± 0.03) is consistent, within the errors, with the fitted slope for the 2003 relation (0.7 ± 0.1), the lower track slope (0.98 ± 0.08) is not consistent with the upper track or with the widely adopted value of ≃1.4 for the neutron stars. The two luminosity tracks do not reflect systematic differences in black hole spins as estimated either from reflection- or continuum-fitting method. Additionally, there is evidence for at least two sources (H1743-322 and GRO J1655-500) jumping from the lower to the upper track as they fade towards quiescence, further indicating that black hole spin does not play any major role in defining the radio loudness of compact jets from hard black hole X-ray binaries. The results of the clustering and regression analysis are fairly insensitive to the selection of subsamples, accuracy in the distances and the treatment of upper limits. Besides introducing a further level of complexity in understanding the interplay between synchrotron and Comptonized emission from black hole X-ray binaries, the existence of two tracks in the radio/X-ray domain underscores that a high level of caution must be exercised when employing black hole luminosity-luminosity relations for the purpose of estimating a third parameter, such as distance or mass. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.Experimental investigation of a low-cost, high performance focal-plane horn array
IEEE Transactions on Terahertz Science and Technology 2:1 (2012) 61-70