A 2-20 GHz Analog Lag-Correlator for Radio Interferometry

ArXiv e-prints (2011)

Authors:

CM Holler, ME Jones, AC Taylor, AI Harris, SA Maas

LOFAR and APERTIF Surveys of the Radio Sky: Probing Shocks and Magnetic Fields in Galaxy Clusters

Journal of Astrophysics and Astronomy 32 (2011) 557-566-557-566

Authors:

H Röttgering, J Afonso, P Barthel, F Batejat, P Best, A Bonafede, M Brüggen, G Brunetti, K Chy zy, J Conway, FD Gasperin, C Ferrari, M Haverkorn, G Heald, M Hoeft, N Jackson, M Jarvis, L Ker, M Lehnert, G Macario, J McKean, G Miley, R Morganti, T Oosterloo, E Orrù, R Pizzo, D Rafferty, A Shulevski, C Tasse, IV Bemmel, B van der Tol, R van Weeren, M Verheijen, G White, M Wise

A GPU-based survey for millisecond radio transients using ARTEMIS

ArXiv 1111.6399 (2011)

Authors:

W Armour, A Karastergiou, M Giles, C Williams, A Magro, K Zagkouris, S Roberts, S Salvini, F Dulwich, B Mort

Abstract:

Astrophysical radio transients are excellent probes of extreme physical processes originating from compact sources within our Galaxy and beyond. Radio frequency signals emitted from these objects provide a means to study the intervening medium through which they travel. Next generation radio telescopes are designed to explore the vast unexplored parameter space of high time resolution astronomy, but require High Performance Computing (HPC) solutions to process the enormous volumes of data that are produced by these telescopes. We have developed a combined software /hardware solution (code named ARTEMIS) for real-time searches for millisecond radio transients, which uses GPU technology to remove interstellar dispersion and detect millisecond radio bursts from astronomical sources in real-time. Here we present an introduction to ARTEMIS. We give a brief overview of the software pipeline, then focus specifically on the intricacies of performing incoherent de-dispersion. We present results from two brute-force algorithms. The first is a GPU based algorithm, designed to exploit the L1 cache of the NVIDIA Fermi GPU. Our second algorithm is CPU based and exploits the new AVX units in Intel Sandy Bridge CPUs.

Jet trails and mach cones: The interaction of microquasars with the interstellar medium

Astrophysical Journal 742:1 (2011)

Authors:

D Yoon, B Morsony, S Heinz, K Wiersema, RP Fender, DM Russell, R Sunyaev

Abstract:

A subset of microquasars exhibits high peculiar velocity with respect to the local standard of rest due to the kicks they receive when being born in supernovae. The interaction between the radio plasma released by microquasar jets from such high-velocity binaries with the interstellar medium must lead to the production of trails and bow shocks similar to what is observed in narrow-angle tailed radio galaxies and pulsar wind nebulae. We present a set of numerical simulations of this interaction that illuminate the long-term dynamical evolution and the observational properties of these microquasar bow-shock nebulae and trails. We find that this interaction always produces a structure that consists of a bow shock, a trailing neck, and an expanding bubble. Using our simulations to model emission, we predict that the shock surrounding the bubble and the neck should be visible in Hα emission, the interior of the bubble should be visible in synchrotron radio emission, and only the bow shock is likely to be detectable in X-ray emission. We construct an analytic model for the evolution of the neck and bubble shape and compare this model with observations of the X-ray binary SAX J1712.6-3739. © 2011. The American Astronomical Society. All rights reserved.

A Circularly Symmetric Antenna Design With High Polarization Purity and Low Spillover

ArXiv 1111.2702 (2011)

Authors:

CM Holler, AC Taylor, ME Jones, OG King, SJC Muchovej, MA Stevenson, RJ Wylde, CJ Copley, RJ Davis, TJ Pearson, ACS Readhead

Abstract:

We describe the development of two circularly symmetric antennas with high polarization purity and low spillover. Both were designed to be used in an all-sky polarization and intensity survey at 5 GHz (the C-Band All-Sky Survey, C-BASS). The survey requirements call for very low levels of cross-polar leakage and far-out sidelobes. Two different existing antennas, with 6.1-m and 7.6-m diameter primaries, were adapted by replacing the feed and secondary optics, resulting in identical beam performances of 0.73deg FWHM, cross-polarization better than -50 dB, and far-out sidelobes below -70 dB. The polarization purity was realized by using a symmetric low-loss dielectric foam support structure for the secondary mirror, avoiding the need for secondary support struts. Ground spill-over was largely reduced by using absorbing baffles around the primary and secondary mirrors, and by the use of a low-sidelobe profiled corrugated feedhorn. The 6.1-m antenna and receiver have been completed and test results show that the optics meet their design goals.