On the nature of the "radio quiet" black hole binaries

(2010)

Authors:

Paolo Soleri, Rob Fender

Blazars in the Fermi Era: The OVRO 40-m Telescope Monitoring Program

(2010)

Authors:

Joseph L Richards, Walter Max-Moerbeck, Vasiliki Pavlidou, Oliver G King, Timothy J Pearson, Anthony CS Readhead, Rodrigo Reeves, Martin C Shepherd, Matthew A Stevenson, Lawrence C Weintraub, Lars Fuhrmann, Emmanouil Angelakis, J Anton Zensus, Stephen E Healey, Roger W Romani, Michael S Shaw, Keith Grainge, Mark Birkinshaw, Katy Lancaster, Diana M Worrall, Gregory B Taylor, Garret Cotter, Ricardo Bustos

Design drivers for a wide-field multi-object spectrograph for the William Herschel Telescope

Proceedings of SPIE - The International Society for Optical Engineering 7735:PART 1 (2010)

Authors:

M Balcells, CR Benn, D Carter, GB Dalton, SC Trager, S Feltzing, MAW Verheijen, M Jarvis, W Percival, DC Abrams, T Agocs, AGA Brown, D Cano, C Evans, A Helmi, IJ Lewis, R McLure, RF Peletier, I Pérez-Fournon, RM Sharples, IAJ Tosh, I Trujillo, N Walton, KB Westhall

Abstract:

Wide-field multi-object spectroscopy is a high priority for European astronomy over the next decade. Most 8-10m telescopes have a small field of view, making 4-m class telescopes a particularly attractive option for wide-field instruments. We present a science case and design drivers for a wide-field multi-object spectrograph (MOS) with integral field units for the 4.2-m William Herschel Telescope (WHT) on La Palma. The instrument intends to take advantage of a future prime-focus corrector and atmospheric-dispersion corrector (Agocs et al, this conf.) that will deliver a field of view 2 deg in diameter, with good throughput from 370 to 1,000 nm. The science programs cluster into three groups needing three different resolving powers R: (1) high-precision radial-velocities for Gaia-related Milky Way dynamics, cosmological redshift surveys, and galaxy evolution studies (R = 5,000), (2) galaxy disk velocity dispersions (R = 10,000) and (3) high-precision stellar element abundances for Milky Way archaeology (R = 20,000). The multiplex requirements of the different science cases range from a few hundred to a few thousand, and a range of fibre-positioner technologies are considered. Several options for the spectrograph are discussed, building in part on published design studies for E-ELT spectrographs. Indeed, a WHT MOS will not only efficiently deliver data for exploitation of important imaging surveys planned for the coming decade, but will also serve as a test-bed to optimize the design of MOS instruments for the future E-ELT. © 2010 Copyright SPIE - The International Society for Optical Engineering.

HARMONI: A single-field wide-band integral-field spectrograph for the European ELT

Proceedings of SPIE - The International Society for Optical Engineering 7735:PART 1 (2010)

Authors:

N Thatte, M Tecza, F Clarke, RL Davies, A Remillieux, R Bacon, D Lunney, S Arribas, E Mediavilla, F Gago, N Bezawada, P Ferruit, A Fragoso, D Freeman, J Fuentes, T Fusco, A Gallie, A Garcia, T Goodsall, F Gracia, A Jarno, J Kosmalski, J Lynn, S McLay, D Montgomery, A Pecontal, H Schnetler, H Smith, D Sosa, G Battaglia, N Bowles, L Colina, E Emsellem, A Garcia-Perez, S Gladysz, I Hook, P Irwin, M Jarvis, R Kennicutt, A Levan, A Longmore, J Magorrian, M McCaughrean, L Origlia, R Rebolo, D Rigopoulou, S Ryan, M Swinbank, N Tanvir, E Tolstoy, A Verma

Abstract:

We describe the results of a Phase A study for a single field, wide band, near-infrared integral field spectrograph for the European Extremely Large Telescope (E-ELT). HARMONI, the High Angular Resolution Monolithic Optical & Nearinfrared Integral field spectrograph, provides the E-ELT's core spectroscopic requirement. It is a work-horse instrument, with four different spatial scales, ranging from seeing to diffraction-limited, and spectral resolving powers of 4000, 10000 & 20000 covering the 0.47 to 2.45 μm wavelength range. It is optimally suited to carry out a wide range of observing programs, focusing on detailed, spatially resolved studies of extended objects to unravel their morphology, kinematics and chemical composition, whilst also enabling ultra-sensitive observations of point sources. We present a synopsis of the key science cases motivating the instrument, the top level specifications, a description of the opto-mechanical concept, operation and calibration plan, and image quality and throughput budgets. Issues of expected performance, complementarity and synergies, as well as simulated observations are presented elsewhere in these proceedings[1]. © 2010 Copyright SPIE - The International Society for Optical Engineering.

The detection of a population of submillimeter-bright, strongly lensed galaxies.

Science 330:6005 (2010) 800-804

Authors:

Mattia Negrello, R Hopwood, G De Zotti, A Cooray, A Verma, J Bock, DT Frayer, MA Gurwell, A Omont, R Neri, H Dannerbauer, LL Leeuw, E Barton, J Cooke, S Kim, E da Cunha, G Rodighiero, P Cox, DG Bonfield, MJ Jarvis, S Serjeant, RJ Ivison, S Dye, I Aretxaga, DH Hughes, E Ibar, F Bertoldi, I Valtchanov, S Eales, L Dunne, SP Driver, R Auld, S Buttiglione, A Cava, CA Grady, DL Clements, A Dariush, J Fritz, D Hill, JB Hornbeck, L Kelvin, G Lagache, M Lopez-Caniego, J Gonzalez-Nuevo, S Maddox, E Pascale, M Pohlen, EE Rigby, A Robotham, C Simpson, DJB Smith, P Temi, MA Thompson, BE Woodgate, DG York, JE Aguirre, A Beelen, A Blain, AJ Baker, M Birkinshaw, R Blundell, CM Bradford, D Burgarella, L Danese, JS Dunlop, S Fleuren, J Glenn, AI Harris, J Kamenetzky, RE Lupu, RJ Maddalena, BF Madore, PR Maloney, H Matsuhara, MJ Michaowski, EJ Murphy, BJ Naylor, H Nguyen, C Popescu, S Rawlings, D Rigopoulou, D Scott, KS Scott, M Seibert, I Smail, RJ Tuffs, JD Vieira, PP van der Werf, J Zmuidzinas

Abstract:

Gravitational lensing is a powerful astrophysical and cosmological probe and is particularly valuable at submillimeter wavelengths for the study of the statistical and individual properties of dusty star-forming galaxies. However, the identification of gravitational lenses is often time-intensive, involving the sifting of large volumes of imaging or spectroscopic data to find few candidates. We used early data from the Herschel Astrophysical Terahertz Large Area Survey to demonstrate that wide-area submillimeter surveys can simply and easily detect strong gravitational lensing events, with close to 100% efficiency.