Simultaneous single-pulse observations of radio pulsars V. On the broadband nature of the pulse nulling phenomenon in PSR B1133+16

Astronomy and Astrophysics 462:1 (2007) 257-268

Authors:

NDR Bhat, Y Gupta, M Kramer, A Karastergiou, AG Lyne, S Johnston

Abstract:

Aims. In this paper we revisit the well-known phenomenon of pulse nulling using high-quality single-pulse data of PSR B1133+16 from simultaneous multifrequency observations. Methods. Observations were made at 325, 610, 1400 and 4850 MHz as part of a joint program between the European Pulsar Network (EPN) and the Giant Metrewave Radio Telescope (GMRT). The pulse energy time series are analysed to derive improved statistics of nulling pulses as well as to investigate the frequency dependence of the phenomenon. Results. The pulsar is observed to be in null state for approximately 15% of the time; however, we find that nulling does not always occur simultaneously at all four frequencies of observation. We characterise the statistics of such "selective nulling" as a function of frequency, separation in frequency, and combination of frequencies. The most remarkable case of such selective nulling seen in our data is a significantly large number of nulls (≈6%) at lower frequencies, that are marked by the presence of a fairly narrow emission feature at the highest frequency of 4850 MHz. We refer to these as "low frequency (LF) nulls". We characterise the properties of high frequency (HF) emission at the occurrence of LF nulls, and compare and contrast them with that of "normal emission" at 4850 MHz. Our analysis shows that this high frequency emission tends to occur preferentially over a narrow range in longitude and with pulse widths typically of the order of a few milliseconds. We discuss the implications of our results for the pulsar emission mechanism in general and for the broadbandness of nulling phenomenon in particular. Our results signify the presence of an additional process of emission which does not turn off when the pulsar nulls at low frequencies, and becomes more prominent at higher frequencies. Our analysis also hints at a possible outer gap origin for this new population of pulses, and thus a likely connection to some high-energy emission processes that occur in the outer parts of the pulsar magnetosphere. © ESO 2007.

The discovery of a massive supercluster at z = 0.9 in the UKIDSS deep eXtragalactic survey

Monthly Notices of the Royal Astronomical Society 379:4 (2007) 1343-1351

Authors:

AM Swinbank, AC Edge, I Smail, JP Stott, M Bremer, Y Sato, C Van Breukelen, M Jarvis, I Waddington, L Clewley, J Bergeron, G Cotter, S Dye, JE Geach, E Gonzalez-Solares, P Hirst, RJ Ivison, S Rawlings, C Simpson, GP Smith, A Verma, T Yamada

Abstract:

We analyse the first publicly released deep field of the UK Infrared Deep Sky Survey (UKIDSS) Deep eXtragalactic Survey to identify candidate galaxy overdensities at z ∼ 1 across ∼1 deg2 in the ELAIS-N1 field. Using I - K, J - K and K - 3.6 μm colours, we identify and spectroscopically follow up five candidate structures with Gemini/Gemini Multi-Object Spectrograph and confirm that they are all true overdensities with between five and 19 members each. Surprisingly, all five structures lie in a narrow redshift range at z = 0.89 ± 0.01, although they are spread across 30 Mpc on the sky. We also find a more distant overdensity at z = 1.09 in one of the spectroscopic survey regions. These five overdense regions lying in a narrow redshift range indicate the presence of a supercluster in this field and by comparing with mock cluster catalogues from N-body simulations we discuss the likely properties of this structure. Overall, we show that the properties of this supercluster are similar to the well-studied Shapley and Hercules superclusters at lower redshift. © 2007 RAS.

Evidence for cold accretion onto a massive galaxy at high redshift?

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 378:1 (2007) L49-L53

Authors:

Daniel JB Smith, Matt J Jarvis

Integral-field studies of the high-redshift universe

ESO ASTROPHY SYMP (2007) 381-385

Authors:

MJ Jarvis, C van Breukelen, BP Venemans, RJ Wilman

Abstract:

We present results from a new method of exploring the distant Universe. We use 3-D spectroscopy to sample a large cosmological volume at a time when the Universe was less than 3 billion years old to investigate the evolution of star-formation activity. Within this study we also discovered a high redshift type-II quasar which would not have been identified with imaging studies alone. This highlights the crucial role that integral-field spectroscopy may play in surveying the distant Universe in the future.

Science with the next generation of radio surveys from LOFAR to the SKA

AT THE EDGE OF THE UNIVERSE: LATEST RESULTS FROM THE DEEPEST ASTRONOMICAL SURVEYS 380 (2007) 251-256