Absolute polarization position angle profiles of southern pulsars at 1.4 and 3.1 GHz

Monthly Notices of the Royal Astronomical Society 365:2 (2006) 353-366

Authors:

A Karastergiou, S Johnston

Abstract:

We present here a direct comparison of the polarization position angle (PA) profiles of 17 pulsars, observed at 1.4 and 3.1 GHz. Absolute PAs are obtained at each frequency, permitting a measurement of the difference in the profiles. By doing this, we obtain more precise rotation measure (RM) values for some of the pulsars in the current catalogue. We find that, apart from RM corrections, there are small, pulse-longitude-dependent differences in PA with frequency. Such differences go beyond the interpretation of a geometrical origin. We describe in detail the PA evolution between the two frequencies and discuss possible causes, such as orthogonal and nonorthogonal polarization modes of emission. We also use the PA and total power profiles to estimate the difference in emission height at which the two frequencies originate. In our data sample, there are changes in the relative strengths of different pulse components, especially overlapping linearly polarized components, which coincide with intrinsic changes of the PA profile, resulting in interesting PA differences between the two frequencies. © 2005 RAS.

An empirical model for the polarization of pulsar radio emission

Monthly Notices of the Royal Astronomical Society 365:2 (2006) 638-646

Authors:

D Melrose, A Miller, A Karastergiou, Q Luo

Abstract:

We present an empirical model for single pulses of radio emission from pulsars based on Gaussian probability distributions for relevant variables. The radiation at a specific pulse phase is represented as the superposition of radiation in two (approximately) orthogonally polarized modes (OPMs) from one or more subsources in the emission region of the pulsar. For each subsource, the polarization states are drawn randomly from statistical distributions, with the mean and the variance on the Poincaré sphere as free parameters. The intensity of one OPM is chosen from a lognormal distribution, and the intensity of the other OPM is assumed to be partially correlated, with the degree of correlation also chosen from a Gaussian distribution. The model is used to construct simulated data described in the same format as real data: distributions of the polarization of pulses on the Poincaré sphere and histograms of the intensity and other parameters. We concentrate on the interpretation of data for specific phases of PSR B0329+54 for which the OPMs are not orthogonal, with one well defined and the other spread out around an annulus on the Poincaré sphere at some phases. The results support the assumption that the radiation emerges in two OPMs with closely correlated intensities, and that in a statistical fraction of pulses one OPM is invisible. © 2005 RAS.

High-frequency observations of southern pulsars

Monthly Notices of the Royal Astronomical Society 369:4 (2006) 1916-1928

Authors:

S Johnston, A Karastergiou, K Willett

Abstract:

We present polarization data for 32 mainly southern pulsars at 8.4 GHz. The observations show that the polarization fraction is low in most pulsars at this frequency except for the young, energetic pulsars which continue to show polarization fractions in excess of 60 per cent. All the pulsars in the sample show evidence for conal emission with only one-third also showing core emission. Many profiles are asymmetric, with either the leading or the trailing part of the cone not detectable. Somewhat surprisingly, the asymmetric profiles tend to be more polarized than the symmetrical profiles. Little or no pulse narrowing is seen between 1 and 8.4 GHz. The spectral behaviour of the orthogonal polarization modes and radius to frequency mapping can likely account for much of the observational phenomenology. Highly polarized components may originate from higher in the magnetosphere than unpolarized components. © 2006 RAS.

Monitoring LMXBs with the faulkes telescope

International Conference Recent Advances in Natural Language Processing, RANLP (2006)

Authors:

F Lewis, DM Russell, RP Fender, P Roche

Abstract:

The Faulkes Telescope Project is the educational arm of the Las Cumbres Observatory Global Telescope Network (LCOGT). It currently has two 2-metre robotic telescopes, located at Haleakala on Maui (FT North) and Siding Spring in Australia (FT South). It is planned to increase this to six 2-metre telescopes in the future, complemented by a network of 30-40 smaller (0.4 - 1 metre) telescopes providing 24 hour coverage of both northern and southern hemispheres. We are undertaking a monitoring project of 10 low-mass X-ray binaries (LMXBs) using FT North to study the optical continuum behaviour of X-ray transients in quiescence. The introduction of FT South in September 2006 allows us to extend this monitoring to include 17 southern hemisphere LMXBs. With new instrumentation, we also intend to expand this monitoring to include both infrared wavelengths and spectroscopy.

Non-Gaussianity in the Very Small Array cosmic microwave background maps with smooth goodness-of-fit tests

Monthly Notices of the Royal Astronomical Society 369:2 (2006) 909-920

Authors:

JA Rubiño-Martín, AM Aliaga, RB Barreiro, RA Battye, P Carreira, K Cleary, RD Davies, RJ Davis, C Dickinson, R Génova-Santos, K Grainge, CM Gutiérrez, YA Hafez, MP Hobson, ME Jones, R Kneissl, K Lancaster, A Lasenby, JP Leahy, K Maisinger, E Martínez-González, GG Pooley, N Rajguru, R Rebolo, JL Sanz, RDE Saunders, RS Savage, A Scaife, P Scott, A Slosar, AC Taylor, D Titterington, E Waldram, RA Watson

Abstract:

We have used the Rayner and Best smooth tests of goodness-of-fit to study the Gaussianity of the Very Small Array (VSA) data. These tests are designed to be sensitive to the presence of 'smooth' deviations from a given distribution, and are applied to the data transformed into normalized signal-to-noise eigenmodes. In a previous work, they have been already adapted and applied to simulated observations of interferometric experiments. In this paper, we extend the practical implementation of the method to deal with mosaiced observations, by introducing the Arnoldi algorithm. This method permits us to solve large eigenvalue problems with low computational cost. Out of the 41 published VSA individual pointings dedicated to cosmological [cosmic microwave background (CMB)] observations, 37 are found to be consistent with Gaussianity, whereas four pointings show deviations from Gaussianity. In two of them, these deviations can be explained as residual systematic effects of a few visibility points which, when corrected, have a negligible impact on the angular power spectrum. The non-Gaussianity found in the other two (adjacent) pointings seems to be associated to a local deviation of the power spectrum of these fields with respect to the common power spectrum of the complete data set, at angular scales of the third acoustic peak (ℓ = 700-900). No evidence of residual systematics is found in this case, and unsubtracted point sources are not a plausible explanation either. If those visibilities are removed, the differences of the new power spectrum with respect to the published one only affect three bins. A cosmological analysis based on this new VSA power spectrum alone shows no differences in the parameter constraints with respect to our published results, except for the physical baryon density, which decreases by 10 per cent. Finally, the method has been also used to analyse the VSA observations in the Corona Borealis supercluster region. Our method finds a clear deviation (99.82 per cent) with respect to Gaussianity in the second-order moment of the distribution, and which cannot be explained as systematic effects. A detailed study shows that the non-Gaussianity is produced in scales of ℓ ≈ 500, and that this deviation is intrinsic to the data (in the sense that cannot be explained in terms of a Gaussian field with a different power spectrum). This result is consistent with the Gaussianity studies in the Corona Borealis data presented in Génova-Santos et al. which show a strong decrement that cannot be explained as primordial CMB. © 2006 RAS.