First Detection of Spectral Variations of Anomalous Microwave Emission with QUIJOTE and C-BASS

Authors:

R Cepeda-Arroita, S Harper, C Dickinson, Ja Rubiño-Martín, Rt Génova-Santos, Angela C Taylor, Tj Pearson, M Ashdown, A Barr, Rb Barreiro, B Casaponsa, Fj Casas, Hc Chiang, R Fernandez-Cobos, Rdp Grumitt, F Guidi, Hm Heilgendorff, D Herranz, Lrp Jew, Jl Jonas, Michael E Jones, A Lasenby, J Leech, Jp Leahy, E Martínez-González, Mw Peel, F Poidevin, L Piccirillo, Acs Readhead, R Rebolo, B Ruiz-Granados, J Sievers, F Vansyngel, P Vielva, Ra Watson

Group connectivity in COSMOS: a tracer of mass assembly history

Authors:

E Darragh-Ford, C Laigle, G Gozaliasl, C Pichon, JULIEN Devriendt, A Slyz, S Arnouts, Y Dubois, A Finoguenov, R Griffiths, K Kraljic, H Pan, S Peirani, F Sarron

Abstract:

Cosmic filaments are the channel through which galaxy groups assemble their mass. Cosmic connectivity, namely the number of filaments connected to a given group, is therefore expected to be an important ingredient in shaping group properties. The local connectivity is measured in COSMOS around X-Ray detected groups between redshift 0.5 and 1.2. To this end, large-scale filaments are extracted using the accurate photometric redshifts of the COSMOS2015 catalogue in two-dimensional slices of thickness 120 comoving Mpc centred on the group's redshift. The link between connectivity, group mass and the properties of the brightest group galaxy (BGG) is investigated. The same measurement is carried out on mocks extracted from the lightcone of the hydrodynamical simulation Horizon-AGN in order to control systematics. More massive groups are on average more connected. At fixed group mass in low-mass groups, BGG mass is slightly enhanced at high connectivity, while in high mass groups BGG mass is lower at higher connectivity. Groups with a star-forming BGG have on average a lower connectivity at given mass. From the analysis of the Horizon-AGN simulation, we postulate that different connectivities trace different paths of group mass assembly: at high group mass, groups with higher connectivity are more likely to have grown through a recent major merger, which might be in turn the reason for the quenching of the BGG. Future large-field photometric surveys, such as Euclid and LSST, will be able to confirm and extend these results by probing a wider mass range and a larger variety of environment.

Large Synoptic Survey Telescope White Paper; The Case for Matching U-band on Deep Drilling Fields

Authors:

BW Holwerda, A Baker, S Blyth, S Kannappan, D Obreschkow, S Ravindranath, E Elson, M Vaccari, S Crawford, M Bershady, N Hathi, N Maddox, R Taylor, MATTHEW Jarvis, J Bridge

Abstract:

U-band observations with the LSST have yet to be fully optimized in cadence. The straw man survey design is a simple coverage of the medium-deep-fast survey. Here we argue that deep coverage of the four deep drilling fields (XMM-LSS, ECDFS, ELAIS-S1 and COSMOS) has a much higher scientific return, given that these are also the target of the Southern Hemisphere's Square Kilometer Array Pathfinder, the MeerKAT specifically, deep radio observations.

The Birth of a Relativistic Jet Following the Disruption of a Star by a Cosmological Black Hole

Authors:

Dheeraj Pasham, Matteo Lucchini, Tanmoy Laskar, Benjamin Gompertz, Shubham Srivas, Matt Nicholl, Stephen Smartt, James Miller-Jones, Kate Alexander, Rob Fender, Graham Smith, Michael Fulton, Gulab Dewangan, Keith Gendreau, Lauren Rhodes, Assaf Horesh, Sjoert van Velzen, Itai Sfaradi, Muryel Guolo, N Castro Segura, Aysha Aamer, Joseph Anderson, Iair Arcavi, Seán Brennan, Kenneth Chambers, Panos Charalampopoulos, Ting-Wan Chen, Alejandro Clocchiatti, Thomas de Boer, Michel Dennefeld, Elizabeth Ferrara, Lluís Galbany, Hua Gao, James Gillanders, Adelle Goodwin, Mariusz Gromadzki, M Huber, Peter Jonker, Manasvita Joshi, Erin Kara, Thomas Killestein, Peter Kosec, Daniel Kocevski, Giorgos Leloudas, Chien-Cheng Lin, Raffaella Margutti, Seppo Mattila, Thomas Moore, Tom ’as M\”uller-Bravo, Chow-Choong Ngeow, Samantha Oates, Francesca Onori, Yen-Chen Pan, Miguel Perez Torres, Priyanka Rani, Ronald Remillard, E Ridley, Steve Schulze, Xinyue Sheng, Luke Shingles, Ken Smith, James Steiner, Richard Wainscoat, Thomas Wevers, Sheng Yang

The KMOS Redshift One Spectroscopic Survey (KROSS): the origin of disk turbulence in z~0.9 star-forming galaxies

arXiv

Authors:

HL Johnson, CM Harrison, AM Swinbank, AL Tiley, JP Stott, RG Bower, I Smail, AJ Bunker, D Sobral, OJ Turner, P Best, Martin Bureau, M Cirasuolo, Matthew Jarvis, G Magdis, RM Sharples, J Bland-Hawthorn, B Catinella, L Cortese, SM Croom, C Federrath, K Glazebrook, SM Sweet, JJ Bryant, IS Konstantopoulos

Abstract:

We analyse the velocity dispersion properties of 472 z~0.9 star-forming galaxies observed as part of the KMOS Redshift One Spectroscopic Survey (KROSS). The majority of this sample is rotationally dominated (83 +/- 5% with v_C/sigma_0 > 1) but also dynamically hot and highly turbulent. After correcting for beam smearing effects, the median intrinsic velocity dispersion for the final sample is sigma_0 = 43.2 +/- 0.8 km/s with a rotational velocity to dispersion ratio of v_C/sigma_0 = 2.6 +/- 0.1. To explore the relationship between velocity dispersion, stellar mass, star formation rate and redshift we combine KROSS with data from the SAMI survey (z~0.05) and an intermediate redshift MUSE sample (z~0.5). While there is, at most, a weak trend between velocity dispersion and stellar mass, at fixed mass there is a strong increase with redshift. At all redshifts, galaxies appear to follow the same weak trend of increasing velocity dispersion with star formation rate. Our results are consistent with an evolution of galaxy dynamics driven by disks that are more gas rich, and increasingly gravitationally unstable, as a function of increasing redshift. Finally, we test two analytic models that predict turbulence is driven by either gravitational instabilities or stellar feedback. Both provide an adequate description of the data, and further observations are required to rule out either model.