Search for dark matter annihilation signals in the H.E.S.S. Inner galaxy survey

Physical Review Letters American Physical Society 129:11 (2022) 111101

Authors:

H Abdalla, F Aharonian, F Ait Benkhali, Eo Angüner, C Armand, H Ashkar, M Backes, V Baghmanyan, V Barbosa Martins, R Batzofin, Y Becherini, D Berge, K Bernlöhr, B Bi, M Böttcher, J Bolmont, M de Bony de Lavergne, R Brose, F Brun, F Cangemi, S Caroff, M Cerruti, T Chand, A Chen, G Cotter, J Damascene Mbarubucyeye, J Devin, A Djannati-Ataï, A Dmytriiev, V Doroshenko, K Egberts, A Fiasson, G Fichet de Clairfontaine, G Fontaine, S Funk, S Gabici, G Giavitto, D Glawion, Jf Glicenstein, M-H Grondin, Ja Hinton, W Hofmann, Tl Holch, M Holler, D Horns, Zhiqiu Huang, M Jamrozy, F Jankowsky, E Kasai, K Katarzyński

Abstract:

The central region of the Milky Way is one of the foremost locations to look for dark matter (DM) signatures. We report the first results on a search for DM particle annihilation signals using new observations from an unprecedented γ-ray survey of the Galactic Center (GC) region, i.e., the Inner Galaxy Survey, at very high energies (≳100  GeV) performed with the H.E.S.S. array of five ground-based Cherenkov telescopes. No significant γ-ray excess is found in the search region of the 2014-2020 dataset and a profile likelihood ratio analysis is carried out to set exclusion limits on the annihilation cross section ⟨σv⟩. Assuming Einasto and Navarro-Frenk-White (NFW) DM density profiles at the GC, these constraints are the strongest obtained so far in the TeV DM mass range. For the Einasto profile, the constraints reach ⟨σv⟩ values of 3.7×10^{-26}  cm^{3} s^{-1} for 1.5 TeV DM mass in the W^{+}W^{-} annihilation channel, and 1.2×10^{-26}  cm^{3} s^{-1} for 0.7 TeV DM mass in the τ^{+}τ^{-} annihilation channel. With the H.E.S.S. Inner Galaxy Survey, ground-based γ-ray observations thus probe ⟨σv⟩ values expected from thermal-relic annihilating TeV DM particles.

The eccentric millisecond pulsar, PSR J0955−6150

Astronomy & Astrophysics EDP Sciences 665 (2022) a53

Authors:

M Serylak, V Venkatraman Krishnan, PCC Freire, TM Tauris, M Kramer, M Geyer, A Parthasarathy, M Bailes, MCI Bernadich, S Buchner, M Burgay, F Camilo, A Karastergiou, ME Lower, A Possenti, DJ Reardon, RM Shannon, R Spiewak, IH Stairs, W van Straten

A born again 32-meter radio telescope for Mexico

Proceedings of SPIE--the International Society for Optical Engineering SPIE, the international society for optics and photonics 12182 (2022) 121822t-121822t-9

Authors:

Stanley E Kurtz, Angela C Taylor, Michael E Jones, David M Gale, Eduardo Ibarra Medel, Alexander Pollak, Chao Liu

The population of Galactic Centre filaments - III. Candidate radio and stellar sources

Monthly Notices of the Royal Astronomical Society Oxford University Press 517:1 (2022) 294-355

Authors:

F Yusef-Zadeh, Rg Arendt, M Wardle, I Heywood, W Cotton

Abstract:

Recent MeerKAT radio continuum observations of the Galactic Centre at 20 cm show a large population of non-thermal radio filaments (NRFs) in the inner few hundred pc of the Galaxy. We have selected a sample of 57 radio sources, mainly compact objects, in the MeerKAT mosaic image that appear to be associated with NRFs. The selected sources are about four times the number of radio point sources associated with filaments than would be expected by random chance. Furthermore, an apparent correlation between bright IR stars and NRFs is inferred from their similar latitude distributions, suggesting that they both co-exist within the same region. To examine if compact radio sources are related to compact IR sources, we have used archival 2MASS, and Spitzer data to make spectral energy distribution of individual stellar sources coincident or close to radio sources. We provide a catalogue of radio and IR sources for future detailed observations to investigate a potential three-way physical association between NRFs, compact radio and IR stellar sources. This association is suggested by models in which NRFs are cometary tails produced by the interaction of a large-scale nuclear outflow with stellar wind bubbles in the Galactic Centre.

MIGHTEE-Hi: evolution of hi scaling relations of star-forming galaxies at z < 0.5* * released on July 29, 2022

Astrophysical Journal Letters IOP Science 935:1 (2022) L13

Authors:

F Sinigaglia, G Rodighiero, E Elson, M Vaccari, N Maddox, Bs Frank, Mj Jarvis, T Oosterloo, R Davé, M Salvato, M Baes, S Bellstedt, L Bisigello, Jd Collier, Rhw Cook, Ljm Davies, J Delhaize, Sp Driver, C Foster, S Kurapati, Cd Claudia, C Lidman, Pe Mancera Piña, Mj Meyer, Km Mogotsi, H Pan, Aa Ponomareva, I Prandoni, Sha Rajohnson, Asg Robotham, Mg Santos, S Sekhar, K Spekkens, Je Thorne, Jm van der Hulst, Oi Wong

Abstract:

We present the first measurements of H i galaxy scaling relations from a blind survey at z > 0.15. We perform spectral stacking of 9023 spectra of star-forming galaxies undetected in H i at 0.23 < z < 0.49, extracted from MIGHTEE-H i Early Science data cubes, acquired with the MeerKAT radio telescope. We stack galaxies in bins of galaxy properties (stellar mass M *, star formation rateSFR, and specific star formation rate sSFR, with sSFR ≡ M */SFR), obtaining ≳5σ detections in most cases, the strongest H i-stacking detections to date in this redshift range. With these detections, we are able to measure scaling relations in the probed redshift interval, finding evidence for a moderate evolution from the median redshift of our sample z med ∼ 0.37 to z ∼ 0. In particular, low-M * galaxies ( log 10 ( M * / M ⊙ ) ∼ 9 ) experience a strong H i depletion (∼0.5 dex in log 10 ( M H I / M ⊙ ) ), while massive galaxies ( log 10 ( M * / M ⊙ ) ∼ 11 ) keep their H i mass nearly unchanged. When looking at the star formation activity, highly star-forming galaxies evolve significantly in M H I (f H I, where f H I ≡ M H I/M *) at fixed SFR (sSFR), while at the lowest probed SFR (sSFR) the scaling relations show no evolution. These findings suggest a scenario in which low-M * galaxies have experienced a strong H i depletion during the last ∼5 Gyr, while massive galaxies have undergone a significant H i replenishment through some accretion mechanism, possibly minor mergers. Interestingly, our results are in good agreement with the predictions of the simba simulation. We conclude that this work sets novel important observational constraints on galaxy scaling relations.