Quantifying uncertainty in deep learning approaches to radio galaxy classification

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 511:3 (2022) 3722-3740

Authors:

Devina Mohan, Anna MM Scaife, Fiona Porter, Mike Walmsley, Micah Bowles

The C-Band All-Sky Survey (C-BASS): Template Fitting of Diffuse Galactic Microwave Emission in the Northern Sky

ArXiv 2202.10411 (2022)

Authors:

SE Harper, C Dickinson, A Barr, R Cepeda-Arroita, RDP Grumitt, HM Heilgendorff, L Jew, JL Jonas, ME Jones, JP Leahy, J Leech, TJ Pearson, MW Peel, ACS Readhead, AC Taylor

Time-resolved hadronic particle acceleration in the recurrent Nova RS Ophiuchi

(2022)

Authors:

HESS Collaboration, F Aharonian, F Ait Benkhali, EO Angüner, H Ashkar, M Backes, V Baghmanyan, V Barbosa Martins, R Batzofin, Y Becherini, D Berge, K Bernlöhr, B Bi, M Böttcher, C Boisson, J Bolmont, M de Bony de Lavergne, M Breuhaus, R Brose, F Brun, S Caroff, S Casanova, M Cerruti, T Chand, A Chen, G Cotter, J Damascene Mbarubucyeye, A Djannati-Ataï, A Dmytriiev, V Doroshenko, C Duffy, K Egberts, J-P Ernenwein, S Fegan, K Feijen, A Fiasson, G Fichet de Clairfontaine, G Fontaine, M Füßling, S Funk, S Gabici, YA Gallant, S Ghafourizadeh, G Giavitto, L Giunti, D Glawion, JF Glicenstein, M-H Grondin, G Hermann, JA Hinton, M Hörbe, W Hofmann, C Hoischen, TL Holch, M Holler, D Horns, Zhiqiu Huang, M Jamrozy, F Jankowsky, I Jung-Richardt, E Kasai, K Katarzyński, U Katz, D Khangulyan, B Khélifi, S Klepser, W Kluźniak, Nu Komin, R Konno, K Kosack, D Kostunin, S Le Stum, A Lemière, M Lemoine-Goumard, J-P Lenain, F Leuschner, T Lohse, A Luashvili, I Lypova, J Mackey, D Malyshev, D Malyshev, V Marandon, P Marchegiani, A Marcowith, G Martí-Devesa, R Marx, G Maurin, M Meyer, A Mitchell, R Moderski, L Mohrmann, A Montanari, E Moulin, J Muller, T Murach, K Nakashima, M de Naurois, A Nayerhoda, J Niemiec, A Priyana Noel, P O'Brien, S Ohm, L Olivera-Nieto, E de Ona Wilhelmi, M Ostrowski, S Panny, M Panter, RD Parsons, G Peron, S Pita, V Poireau, DA Prokhorov, H Prokoph, G Pühlhofer, M Punch, A Quirrenbach, P Reichherzer, A Reimer, O Reimer, M Renaud, B Reville, F Rieger, G Rowell, B Rudak, H Rueda Ricarte, E Ruiz-Velasco, V Sahakian, S Sailer, H Salzmann, DA Sanchez, A Santangelo, M Sasaki, J Schäfer, F Schüssler, HM Schutte, U Schwanke, M Senniappan, JNS Shapopi, R Simoni, A Sinha, H Sol, A Specovius, S Spencer, Ł Stawarz, S Steinmassl, C Steppa, T Takahashi, T Tanaka, AM Taylor, R Terrier, C Thorpe-Morgan, M Tsirou, N Tsuji, R Tuffs, Y Uchiyama, T Unbehaun, C van Eldik, B van Soelen, J Veh, C Venter, J Vink, SJ Wagner, F Werner, R White, A Wierzcholska, Yu Wun Wong, A Yusafzai, M Zacharias, D Zargaryan, AA Zdziarski, A Zech, SJ Zhu, S Zouari, N Żywucka

Modelling the kinematics of the decelerating jets from the black hole X-ray binary MAXI J1348-630

Monthly Notices of the Royal Astronomical Society Oxford University Press 511:4 (2022) 4826-4841

Authors:

F Carotenuto, Aj Tetarenko, S Corbel

Abstract:

Black hole low mass X-ray binaries (BH LMXBs) can launch powerful outflows in the form of discrete ejecta. Observing the entire trajectory of these ejecta allows us to model their motion with great accuracy and this is essential for measuring their physical properties. In particular, observing the final deceleration phase, often poorly sampled, is fundamental to obtain a reliable estimate of the jet’s energy. During its 2019/2020 outburst, the BH LMXB MAXI J1348–630 launched a single-sided radio-emitting jet that was detected at large scales after a strong deceleration due to the interaction with the interstellar medium (ISM). We successfully modelled the jet motion with a dynamical external shock model, which allowed us to constrain the jet initial Lorentz factor $\Gamma _0 = 1.85^{+0.15}_{-0.12}$, inclination angle $\theta = {29.3 }_{-3.2}^{+2.7 }$ deg, and ejection date $t_{\rm ej} = 21.5_{-3.0}^{+1.8}$ (MJD–58500). Under simple assumptions on the jet opening angle and on the external ISM density, we find that the jet has a large initial kinetic energy $E_0 = 4.6^{+20.0}_{-3.4} \times 10^{46}$ erg, far greater than what commonly measured for LMXBs from the jet’s synchrotron emission. This implies that discrete ejecta radiate away only a small fraction of their total energy, which is instead transferred to the environment. The jet power estimate is larger than the simultaneous available accretion power, and we present several options to mitigate this discrepancy. We infer that MAXI J1348–630 is likely embedded in an ISM cavity with internal density $n = 0.0010^{+0.0005}_{-0.0003}$ cm−3 and radius $R_{\rm c} = 0.61^{+0.11}_{-0.09}$ pc, which could have been produced by the system’s previous activity, as proposed for other BH LMXBs.

Modeling the kinematics of the decelerating jets from the black hole X-ray binary MAXI J1348$-$630

(2022)

Authors:

F Carotenuto, AJ Tetarenko, S Corbel