The detection of radio emission from known X-ray flaring star EXO 040830-7134.7
MeerKAT discovery of radio emission from the Vela X-1 bow shock
Abstract:
Vela X-1 is a runaway X-ray binary system hosting a massive donor star, whose strong stellar wind creates a bow shock as it interacts with the interstellar medium (ISM). This bow shock has previously been detected in H α and infrared, but, similar to all but one bow shock from a massive runaway star (BD+43o3654), has escaped detection in other wavebands. We report on the discovery of 1.3 GHz radio emission from the Vela X-1 bow shock with the MeerKAT telescope. The MeerKAT observations reveal how the radio emission closely traces the H α line emission, both in the bow shock and in the larger scale diffuse structures known from existing H α surveys. The Vela X-1 bow shock is the first stellar-wind-driven radio bow shock detected around an X-ray binary. In the absence of a radio spectral index measurement, we explore other avenues to constrain the radio emission mechanism. We find that thermal/free-free emission can account for the radio and H α properties, for a combination of electron temperature and density consistent with earlier estimates of ISM density and the shock enhancement. In this explanation, the presence of a local ISM overdensity is essential for the detection of radio emission. Alternatively, we consider a non-thermal/synchrotron scenario, evaluating the magnetic field and broad-band spectrum of the shock. However, we find that exceptionally high fractions (13 per cent) of the kinetic wind power would need to be injected into the relativistic electron population to explain the radio emission. Assuming lower fractions implies a hybrid scenario, dominated by free-free radio emission. Finally, we speculate about the detectability of radio bow shocks and whether it requires exceptional ISM or stellar wind properties.MeerKAT discovery of radio emission from the Vela X-1 bow shock
The Thousand-Pulsar-Array programme on MeerKAT VII: Polarisation properties of pulsars in the Magellanic Clouds
Deep Extragalactic VIsible Legacy Survey (DEVILS): evolution of the σSFR–M⋆ relation and implications for self-regulated star formation
Abstract:
We present the evolution of the star formation dispersion–stellar mass relation (σSFR–M⋆) in the DEVILS D10 region using new measurements derived using the PROSPECT spectral energy distribution fitting code. We find that σSFR–M⋆ shows the characteristic ‘U-shape’ at intermediate stellar masses from 0.1 < z < 0.7 for a number of metrics, including using the deconvolved intrinsic dispersion. A physical interpretation of this relation is the combination of stochastic star formation and stellar feedback causing large scatter at low stellar masses and AGN feedback causing asymmetric scatter at high stellar masses. As such, the shape of this distribution and its evolution encodes detailed information about the astrophysical processes affecting star formation, feedback and the lifecycle of galaxies. We find that the stellar mass that the minimum σSFR occurs evolves linearly with redshift, moving to higher stellar masses with increasing lookback time and traces the turnover in the star-forming sequence. This minimum σSFR point is also found to occur at a fixed specific star formation rate (sSFR) at all epochs (sSFR ∼ 10−9.6 Gyr−1). The physical interpretation of this is that there exists a maximum sSFR at which galaxies can internally self-regulate on the tight sequence of star formation. At higher sSFRs, stochastic stellar processes begin to cause galaxies to be pushed both above and below the star-forming sequence leading to increased SFR dispersion. As the Universe evolves, a higher fraction of galaxies will drop below this sSFR threshold, causing the dispersion of the low stellar mass end of the star-forming sequence to decrease with time.