The JCMT Nearby Galaxies Legacy Survey – IV. Velocity dispersions in the molecular interstellar medium in spiral galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 410:3 (2010) 1409-1422

Authors:

CD Wilson, BE Warren, J Irwin, JH Knapen, FP Israel, S Serjeant, D Attewell, GJ Bendo, E Brinks, HM Butner, DL Clements, J Leech, HE Matthews, S Mühle, AMJ Mortier, TJ Parkin, G Petitpas, BK Tan, RPJ Tilanus, A Usero, M Vaccari, P van der Werf, T Wiegert, M Zhu

The JCMT Nearby Galaxies Legacy Survey IV. Velocity Dispersions in the Molecular Interstellar Medium in Spiral Galaxies

(2010)

Authors:

CD Wilson, BE Warren, J Irwin, JH Knapen, FP Israel, S Serjeant, D Attewell, GJ Bendo, E Brinks, HM Butner, DL Clements, J Leech, HE Matthews, S Muehle, AMJ Mortier, TJ Parkin, G Petitpas, BK Tan, RPJ Tilanus, A Usero, M Vaccari, P van der Werf, T Wiegert, M Zhu

A 700 GHz unilateral finline SIS mixer fed by a multi-flare angle smooth-walled horn

Proceedings of SPIE - The International Society for Optical Engineering 7741 (2010)

Authors:

BK Tan, G Yassin, P Grimes, J Leech, K Jacobs, S Withington, M Tacon, C Groppi

Abstract:

We present the design of a broadband superconductor-insulator- superconductor (SIS) mixer operating near 700 GHz. A key feature of our design is the utilisation of a new type of waveguide to planar circuit transition comprising a unilateral finline taper. This transition is markedly easier to design, simulate and fabricate than the antipodal finline we employed previously. The finline taper and the superconducting circuitry are deposited on a 15 μm thick silicon substrate. The employment of the very thin substrate, achieved using Silicon-On-Insulator (SOI) technology, makes it easy to match the incoming signal to the loaded waveguide. The lightweight mixer chip is held in the E-plane of the waveguide using gold beam leads, avoiding the need for deep grooves in the waveguide wall. This new design yields a significantly shorter chip, free of serrations and a wider RF bandwidth. Since tuning and all other circuits are integrated on the mixer chip, the mixer block is extremely simple, comprising a feed horn and a waveguide section without any complicated mechanical features. We employ a new type of smooth-walled horn which exhibits excellent beam circularity and low cross polarisation, comparable to the conventional corrugated horn, and yet is easier to fabricate. The horn is machined by standard milling with a drill tool shaped into the horn profile. In this paper, we describe the detailed design of the mixer chip including electromagnetic simulations, and the mixer performance obtained with SuperMix simulations. We also present the preliminary measurements of the smooth-walled horn radiation patterns near the mixer operating frequencies. © 2010 SPIE.

Finline-integrated cold electron bolometer

Proceedings of SPIE - The International Society for Optical Engineering 7741 (2010)

Authors:

E Otto, M Tarasov, PK Grimes, NS Kaurova, H Kuusisto, LS Kuzmin, G Yassin

Abstract:

The Cold-Electron Bolometer (CEB) is a sensitive millimetre-wave detector which is easy to integrate with superconducting planar circuits. CEB detectors have other important features such as high saturation power and very fast response. We have fabricated and tested CEB detectors integrated across the slot of a unilateral finline on a silicon substrate. Bolometers were fabricated using two fabrication methods: e-beam direct-write trilayer technology and an advanced shadow mask evaporation technique. The CEB performance was tested in a He3 sorption cryostat at a bath temperature of 280mK. DC I-V curves and temperature responses were measured in a current bias mode, and preliminary measurements of the optical response were made using an IMPATT diode operating at 110GHz. These tests were conducted by coupling power directly into the finline chip, without the use of waveguide or feedhorns. For the devices fabricated in standard direct-write technology, the bolometer dark electrical noise equivalent power is estimated to be about 5×10-16W/ √Hz, while the dark NEP value for the shadow mask evaporation technique devices is estimated to be as low as 3×10-17W/√Hz. © 2010 SPIE.

A 700 GHz unilateral finline SIS mixer fed by a multi-flare angle smooth-walled horn

Proceedings of SPIE--the International Society for Optical Engineering SPIE, the international society for optics and photonics 7741 (2010) 774110-774110-12

Authors:

Boon-Kok Tan, Ghassan Yassin, Paul Grimes, Jamie Leech, Karl Jacobs, Stafford Withington, Mike Tacon, Christopher Groppi