Non-linear two-frequency analysis of SIS mixers through harmonic balance

Journal De Physique. IV : JP 12:3 (2002)

Authors:

S Withington, P Kittara, G Yassin

Abstract:

We present a numerical procedure for simulating the non-linear behaviour of Superconductor-Insulator-Superconductor (SIS) tunnel-junction mixers. Mixers of this kind are used extensively in high-performance submillimetre-wave astronomical receivers. The procedure is complete in that both the signal and local-oscillator voltages can be at high levels, with significant amounts of harmonic content; also, the full quantum mechanical behaviour of the tunnel junction is taken into account. The initial simulations show that multi-tone analysis can be carried out in a numerically efficient manner, and that saturation, and the attendant generation of IF harmonics, can be modelled rigorously. This work constitutes the first full non-linear model of an SIS mixer, and the theoretical and numerical procedures described, will be of great importance when designing the next generation of heterodyne astronomical receivers.

Millimetre-wave optics design & verification

AIP CONF PROC 616 (2002) 290-294

Authors:

C O'Sullivan, JA Murphy, S Withington, G Yassin, E Atad-Ettedgui, W Duncan, D Henry, W Jellema, H van de Stadt

Abstract:

Microwave background astronomy requires very high performance millimetre-wave optical systems. However, compact quasi-optics are difficult to design with any confidence using techniques developed for visible wavelengths. In this paper we investigate the performance of existing software design tools (ASAP, CODE V, GLAD) as well as a Gaussian beam mode analysis technique not yet available as commercial software. We have devised a set of test cases and used these to study the underlying methodologies and physics of these packages and we look at their ability to analyse millimetre systems and components. We have used GRASP as our benchmark software.

Partially-coherent long-wavelength optical simulation techniques for microwave background astronomy

AIP CONF PROC 616 (2002) 274-281

Authors:

S Withington, CY Tham, G Yassin

Abstract:

We outline a procedure for modelling the behaviour of partially-coherent long-wavelength optical systems. The procedure is of considerable importance to microwave background astronomy, where sequences of high-throughput optical components are often used. In the paper, we give a symbolic description of the basic method, and illustrate its use by calculating the radiation pattern of an overmoded waveguide bolometer. To confront a number of fundamental issues, we consider the case where the absorbing disc does not completely fill the waveguide. We also demonstrate the technique by showing how the optical behaviour of an imaging array can be determined by propagating all of the beams in the array simultaneously.

Power coupled between partially coherent vector fields in different states of coherence.

J Opt Soc Am A Opt Image Sci Vis 18:12 (2001) 3061-3071

Authors:

S Withington, G Yassin

Abstract:

A procedure is described for calculating the power coupled between collimated, partially coherent vector fields that are in different states of coherence. This topic is of considerable importance in designing submillimeter-wave optical systems for astronomy. It is shown that if the incoming field S has coherence matrix A, and the outgoing field D has coherence matrix B, then the power coupled is simply Ps = Tr(ATBT), where the elements of T project the basis functions of B onto those of A. A similar technique can be used to calculate the power coupled from the background of S to D. The scheme is illustrated by calculating the power coupled between two scalar, Gaussian Schell-model beams. The procedure can be incorporated into optical design software.

Investigation of microwave propagation in high-temperature superconducting waveguides

IEEE Microwave and Wireless Components Letters 11:10 (2001) 413-415

Authors:

G Yassin, G Jung, V Dikovsky, I Barboy, M Kambara, DA Cardwell, S Withington

Abstract:

It is well known that the boundary conditions of the electromagnetic fields on the surface of a superconductor are influenced by the field penetration into the material. In a series of recent publications, it has been suggested that this effect substantially influences the wave propagation in high-temperature superconducting waveguides, to the extent that the mode order becomes different than that predicted for perfect conductor waveguides. In this paper, we present experimental investigation of this effect. We show that the effect of superconductivity on the wave propagation in waveguides is very small for temperatures well below the transition temperature and away from cutoff. We also discuss the behavior of the waveguide near cutoff and very close to the transition temperature. © 2001 IEEE.