Magnetoelectric domains and their switching mechanism in a Y-type hexaferrite

Physical Review B American Physical Society 100:2019 (2019) 104411

Authors:

FP Chmiel, D Prabahakaran, P Steadman, J Chen, R Fan, RD Johnson, Paolo Radaelli

Abstract:

By employing resonant X-ray microdiffraction, we image the magnetisation and magnetic polarity domains of the Y-type hexaferrite Ba$_{0.5}$Sr$_{1.5}$Mg$_2$Fe$_{12}$O$_{22}$. We show that the magnetic polarity domain structure can be controlled by both magnetic and electric fields, and that full inversion of these domains can be achieved simply by reversal of an applied magnetic field in the absence of an electric field bias. Furthermore, we demonstrate that the diffraction intensity measured in different X-ray polarisation channels cannot be reproduced by the accepted model for the polar magnetic structure, known as the 2-fan transverse conical (TC) model. We propose a modification to this model, which achieves good quantitative agreement with all of our data. We show that the deviations from the TC model are large, and may be the result of an internal magnetic chirality, most likely inherited from the parent helical (non-polar) phase.

FeTi$_2$O$_5$: a spin Jahn-Teller transition tuned by cation substitution

Physical Review B American Physical Society 100 (2019) 094401

Authors:

Franz Lang, L Jowitt, D Prabhakaran, RD Johnson, SJ Blundell

Abstract:

We have used muon-spin rotation, heat capacity and x-ray diffraction measurements in combination with density functional theory and dipole field calculations to investigate the crystal and magnetic structure of FeTi$_2$O$_5$. We observe a long range ordered state below 41.8(5) K with indications of significant correlations existing above this temperature. We determine candidate muon stopping sites in this compound, and find that our data are consistent with the spin Jahn-Teller driven antiferromagnetic ground state with k=(1/2,1/2,0) reported for CoTi$_2$O$_5$. By comparing our data with calculated dipolar fields we can restrict the possible moment size and directions of the Fe$^{2+}$ ions.

Manifold of spin states and dynamical temperature effects in LaCoO3: Experimental and theoretical insights

Physical Review B American Physical Society (APS) 100:5 (2019) 054306

Authors:

M Feygenson, D Novoselov, S Pascarelli, R Chernikov, O Zaharko, F Porcher, D Karpinsky, A Nikitin, D Prabhakaran, A Sazonov, V Sikolenko

Spin-orbit excitons in CoO

Physical Review B American Physical Society (APS) 100:7 (2019) 075143

Authors:

PM Sarte, M Songvilay, E Pachoud, RA Ewings, CD Frost, D Prabhakaran, KH Hong, AJ Browne, Z Yamani, JP Attfield, EE Rodriguez, SD Wilson, C Stock

Topological Lifshitz transitions and Fermi arc manipulation in Weyl semimetal NbAs.

Nature communications 10:1 (2019) 3478

Authors:

HF Yang, LX Yang, ZK Liu, Y Sun, C Chen, H Peng, M Schmidt, D Prabhakaran, BA Bernevig, C Felser, BH Yan, YL Chen

Abstract:

Surface Fermi arcs (SFAs), the unique open Fermi-surfaces (FSs) discovered recently in topological Weyl semimetals (TWSs), are unlike closed FSs in conventional materials and can give rise to many exotic phenomena, such as anomalous SFA-mediated quantum oscillations, chiral magnetic effects, three-dimensional quantum Hall effect, non-local voltage generation and anomalous electromagnetic wave transmission. Here, by using in-situ surface decoration, we demonstrate successful manipulation of the shape, size and even the connections of SFAs in a model TWS, NbAs, and observe their evolution that leads to an unusual topological Lifshitz transition not caused by the change of the carrier concentration. The phase transition teleports the SFAs between different parts of the surface Brillouin zone. Despite the dramatic surface evolution, the existence of SFAs is robust and each SFA remains tied to a pair of Weyl points of opposite chirality, as dictated by the bulk topology.