Magnetic excitations and exchange parameters of the nickel-chain compound PbMn2Ni6Te3 O18: Neutron scattering and density functional theory studies

Physical Review B 111:18 (2025)

Authors:

S Uthayakumar, DT Adroja, A Pokhriyal, AK Bera, H Ghosh, T Gudi, MD Le, C Balz, RA Ewings, M Gupta, PR Sagdeo, D Prabhakaran, JP Goff

Abstract:

We have investigated the quasi-one-dimensional Ni-chain compound PbMn2Ni6Te2O18 using theoretical DFT calculations, inelastic neutron scattering, and optical spectroscopy in order to understand the nature of magnetic exchange interactions. Our inelastic neutron scattering study at 5 K on a powder sample reveals two bands of magnetic excitations, the first near 8 meV and the second near 18 meV originating from the antiferromagnetic zone center near Q=1 Å. On the other hand, at 100 K (which is above TN=86 K) a broad diffuse scattering signal is observed indicating the presence of short range magnetic correlations. We have analyzed the magnetic excitations based on the Linear Spin Wave Theory (LSWT) and compared the experimentally estimated exchange parameters with the DFT calculations. Our analysis reveals that the value of the exchange parameter at the larger distance (d=3.654Å) J3=4.21(8) meV between Ni-Ni (from interchain) is the strongest amongst the allowed six exchange parameters, which suggests that this system is not really a quasi-one-dimensional and confirmed by the absence of a Haldane gap. We have also presented the electronic structure calculations. The spin-polarized partial density of states (DOS) projected onto the Mn-d and Ni-d orbitals reveals that the Ni-dx2-y2 contribution is dominant below the Fermi level in the spin-up and spin-down channel, while a minimal contribution from spin-up Mn states in the occupied region, suggesting a nearly high-spin state. The estimated Néel temperature, based on experimental exchange parameters is found to be in close agreement with the experimental value.

Electronic structure of Bi2Ir2O7 probed by resonant inelastic x-ray scattering at the oxygen K edge: Metallicity, hybridization, and electronic correlations

Physical Review B American Physical Society (APS) 111:15 (2025) 155106

Authors:

P Olalde-Velasco, Y Huang, J Pelliciari, J Miyawaki, A Uldry, D Prabhakaran, B Delley, Y Harada, AT Boothroyd, HM Rønnow, DF McMorrow, T Schmitt

Observation of an interfacial magnon-electron drag in a pyrochlore ferromagnet–heavy metal heterostructure

Physical Review B: Condensed Matter and Materials Physics American Physical Society (2025)

Photo-induced chirality in a nonchiral crystal

Science American Association for the Advancement of Science 387:6732 (2025) 431-436

Authors:

Z Zeng, M Först, M Fechner, M Buzzi, Eb Amuah, C Putzke, Pjw Moll, D Prabhakaran, Pg Radaelli, A Cavalleri

Abstract:

Chirality, a pervasive form of symmetry, is intimately connected to the physical properties of solids, as well as the chemical and biological activity of molecular systems. However, inducing chirality in a nonchiral material is challenging because this requires that all mirrors and all roto-inversions be simultaneously broken. Here, we show that chirality of either handedness can be induced in the nonchiral piezoelectric material boron phosphate (BPO4) by irradiation with terahertz pulses. Resonant excitation of either one of two orthogonal, degenerate vibrational modes determines the sign of the induced chiral order parameter. The optical activity of the photo-induced phases is comparable to the static value of prototypical chiral α-quartz. Our findings offer new prospects for the control of out-of-equilibrium quantum phenomena in complex materials.

AFM-Based Functional Tomography - To Mill or Not to Mill, that is the Question!

Advanced Materials Interfaces Wiley (2025)