Magnetotransport of Sm2Ir2O7 across the pressure-induced quantum-critical phase boundary

npj Quantum Materials Springer Nature 9:1 (2024) 17

Authors:

MJ Coak, K Götze, T Northam De La Fuente, C Castelnovo, JP Tidey, J Singleton, AT Boothroyd, D Prabhakaran, PA Goddard

Weyl metallic state induced by helical magnetic order

npj Quantum Materials Springer Nature 9:1 (2024) 7

Authors:

Jian-Rui Soh, Irián Sánchez-Ramírez, Xupeng Yang, Jinzhao Sun, Ivica Zivkovic, Jose Alberto Rodríguez-Velamazán, Oscar Fabelo, Anne Stunault, Alessandro Bombardi, Christian Balz, Manh Duc Le, Helen C Walker, J Hugo Dil, Dharmalingam Prabhakaran, Henrik M Rønnow, Fernando de Juan, Maia G Vergniory, Andrew T Boothroyd

Abstract:

In the rapidly expanding field of topological materials there is growing interest in systems whose topological electronic band features can be induced or controlled by magnetism. Magnetic Weyl semimetals, which contain linear band crossings near the Fermi level, are of particular interest owing to their exotic charge and spin transport properties. Up to now, the majority of magnetic Weyl semimetals have been realized in ferro- or ferrimagnetically ordered compounds, but a disadvantage of these materials for practical use is their stray magnetic field which limits the minimum size of devices. Here we show that Weyl nodes can be induced by a helical spin configuration, in which the magnetization is fully compensated. Using a combination of neutron diffraction and resonant elastic x-ray scattering, we find that below TN = 14.5 K the Eu spins in EuCuAs develop a planar helical structure which induces two quadratic Weyl nodes with Chern numbers C = ±2 at the A point in the Brillouin zone.

Excitations of quantum Ising chain CoNb2O6 in low transverse field: Quantitative description of bound states stabilized by off-diagonal exchange and applied field

Physical Review B American Physical Society (APS) 108:18 (2023) 184417

Authors:

Leonie Woodland, Izabella Lovas, M Telling, D Prabhakaran, Leon Balents, Radu Coldea

Tuning the confinement potential between spinons in the Ising chain compound CoNb2O6 using longitudinal fields and quantitative determination of the microscopic Hamiltonian

Physical Review B American Physical Society (APS) 108:18 (2023) 184416

Authors:

Leonie Woodland, David Macdougal, Ivelisse M Cabrera, Jordan D Thompson, D Prabhakaran, Robert I Bewley, Radu Coldea

Topological materials for helicity-dependent THz emission

2023 48th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) IEEE (2023) 1-2

Authors:

A Mannan, Y Saboon, CQ Xia, DA Damry, P Schoenherr, Dharmalingam Prabhakaran, Laura M Herz, Thorsten Hesjedal, Michael B Johnston, Jl Boland

Abstract:

Topological insulator (TI) materials are emerging as novel materials for spintronic applications. Here, we demonstrate helicity-dependent THz emission from Dirac semi-metal Cd 3 As 2 nanowires and used scattering-type scanning optical microscopy (s-SNOM) to identify potential single nanowire candidates for device applications. The preliminary investigation data of a candidate nanowire shows a homogenous topography and constant dielectric function in the MIR range. Indicating high-quality crystalline growth ideal for topological characterization.