A New Topological Insulator Built From Quasi One-Dimensional Atomic Ribbons

Physica Status Solidi - Rapid Research Letters Wiley 9:2 (2015) 130-135

Authors:

Piet Scho nherr, Shilei Zhang, YQ Liu, P Kusch, S Reich, T Giles, D Daisenberger, D Prabhakaran, Y Chen, Thorsten Hesjedal

Abstract:

A novel topological insulator with orthorhombic crystal structure is demonstrated. It is characterized by quasi one-dimensional, conducting atomic chains instead of the layered, two-dimensional sheets known from the established Bi2(Se,Te)3 system. The Sb-doped Bi2Se3 nanowires are grown in a TiO2-catalyzed process by chemical vapor deposition. The binary Bi2Se3 is transformed from rhombohedral to orthorhombic by substituting Sb on ~38% of the Bi sites. Pure Sb2Se3 is a topologically trivial band insulator with an orthorhombic crystal structure at ambient conditions, and it is known to transform into a topological insulator at high pressure. Angle-resolved photoemission spectroscopy shows a topological surface state, while Sb doping also tunes the Fermi level to reside in the bandgap.

A new topological insulator built from quasi one-dimensional atomic ribbons

Physica Status Solidi - Rapid Research Letters 9:2 (2015) 130-135

Authors:

P Schönherr, S Zhang, Y Liu, P Kusch, S Reich, T Giles, D Daisenberger, D Prabhakaran, Y Chen, T Hesjedal

Abstract:

A novel topological insulator with orthorhombic crystal structure is demonstrated. It is characterized by quasi one-dimensional, conducting atomic chains instead of the layered, two-dimensional sheets known from the established Bi2(Se,Te)3 system. The Sb-doped Bi2Se3 nanowires are grown in a TiO2-catalyzed process by chemical vapor deposition. The binary Bi2Se3 is transformed from rhombohedral to orthorhombic by substituting Sb on ∼38% of the Bi sites. Pure Sb2Se3 is a topologically trivial band insulator with an orthorhombic crystal structure at ambient conditions, and it is known to transform into a topological insulator at high pressure. Angle-resolved photoemission spectroscopy shows a topological surface state, while Sb doping also tunes the Fermi level to reside in the bandgap.

Magnetic excitation spectrum of LuFe2O4 measured with inelastic neutron scattering

Physical Review B American Physical Society (APS) 91:3 (2015) 035103

Authors:

SM Gaw, HJ Lewtas, DF McMorrow, J Kulda, RA Ewings, TG Perring, RA McKinnon, G Balakrishnan, D Prabhakaran, AT Boothroyd

Anisotropic local modification of crystal field levels in Pr-based pyrochlores: a muon-induced effect modeled using density functional theory.

Physical review letters 114:1 (2015) 017602

Authors:

FR Foronda, F Lang, JS Möller, T Lancaster, AT Boothroyd, FL Pratt, SR Giblin, D Prabhakaran, SJ Blundell

Abstract:

Although muon spin relaxation is commonly used to probe local magnetic order, spin freezing, and spin dynamics, we identify an experimental situation in which the measured response is dominated by an effect resulting from the muon-induced local distortion rather than the intrinsic behavior of the host compound. We demonstrate this effect in some quantum spin ice candidate materials Pr(2)B(2)O(7) (B=Sn, Zr, Hf), where we detect a static distribution of magnetic moments that appears to grow on cooling. Using density functional theory we show how this effect can be explained via a hyperfine enhancement arising from a splitting of the non-Kramers doublet ground states on Pr ions close to the muon, which itself causes a highly anisotropic distortion field. We provide a quantitative relationship between this effect and the measured temperature dependence of the muon relaxation and discuss the relevance of these observations to muon experiments in other magnetic materials.

Atlas of the Global Burden of Stroke (1990-2013): The GBD 2013 Study.

Neuroepidemiology 45:3 (2015) 230-236

Authors:

Valery L Feigin, George A Mensah, Bo Norrving, Christopher JL Murray, Gregory A Roth, GBD 2013 Stroke Panel Experts Group

Abstract:

Background

World mapping is an important tool to visualize stroke burden and its trends in various regions and countries.

Objectives

To show geographic patterns of incidence, prevalence, mortality, disability-adjusted life years (DALYs) and years lived with disability (YLDs) and their trends for ischemic stroke and hemorrhagic stroke in the world for 1990-2013.

Methodology

Stroke incidence, prevalence, mortality, DALYs and YLDs were estimated following the general approach of the Global Burden of Disease (GBD) 2010 with several important improvements in methods. Data were updated for mortality (through April 2014) and stroke incidence, prevalence, case fatality and severity through 2013. Death was estimated using an ensemble modeling approach. A new software package, DisMod-MR 2.0, was used as part of a custom modeling process to estimate YLDs. All rates were age-standardized to new GBD estimates of global population. All estimates have been computed with 95% uncertainty intervals.

Results

Age-standardized incidence, mortality, prevalence and DALYs/YLDs declined over the period from 1990 to 2013. However, the absolute number of people affected by stroke has substantially increased across all countries in the world over the same time period, suggesting that the global stroke burden continues to increase. There were significant geographical (country and regional) differences in stroke burden in the world, with the majority of the burden borne by low- and middle-income countries.

Conclusions

Global burden of stroke has continued to increase in spite of dramatic declines in age-standardized incidence, prevalence, mortality rates and disability. Population growth and aging have played an important role in the observed increase in stroke burden.