Thermodynamic and magnetic properties of the layered triangular magnet NaNiO2

Physica B: Condensed Matter 374-375 (2006) 47-50

Authors:

PJ Baker, T Lancaster, SJ Blundell, ML Brooks, W Hayes, D Prabhakaran, FL Pratt

Abstract:

We report muon-spin rotation, heat capacity, magnetization, and AC magnetic susceptibility measurements of the magnetic properties of the layered spin-1/2 antiferromagnet NaNiO2. These show the onset of long-range magnetic order below TN=19.5K. The temperature dependence of the muon precession frequency suggests 2D XY magnetic ordering. Rapid muon depolarization persisting to about 5K above TN is consistent with the presence of short-range magnetic order. Our AC susceptibility measurements suggest that magnetic clusters persist above 25K, with their volume fraction decreasing with increasing temperature, and that there is a slowing of spin fluctuations at Tsf=3K. A partial magnetic phase diagram has been deduced. © 2006 Elsevier B.V. All rights reserved.

Effect of SnO2 coating on the magnetic properties of nanocrystalline CuFe2O4

Solid State Communications 137:9 (2006) 512-516

Authors:

RK Selvan, CO Augustin, C Sanjeeviraja, D Prabhakaran

Abstract:

Nanocrystalline CuFe2O4 and CuFe2O 4/xSnO2 nanocomposites (x=0, 1, 5 wt%) have been successfully synthesized by one-pot reaction of urea-nitrate combustion method. The transmission electron microscope study reveals that the particle size of the as synthesized CuFe2O4 and CuFe2O 4/5 wt%SnO2 are 10 and 20 nm, respectively. The SnO 2 coating on the nanocrystalline CuFe2O4 was confirmed from HRTEM studies. The resultant products were sintered at 1100 °C and characterized by XRD and SQUID for compound formation and magnetic studies, respectively. The X-ray diffraction pattern shows the well-defined sharp peak that confirms the phase pure compound formation of tetragonal CuFe2O4. The zero field cooled (ZFC) and field cooled (FC) magnetization was performed using SQUID magnetometer from 2 to 350 K and the magnetic hysteresis measurement was carried out to study the magnetic properties of nanocomposites.

Magnetization of La2-x Srx Ni O4+δ (0≤x≤0.5): Spin-glass and memory effects

Physical Review B - Condensed Matter and Materials Physics 73:1 (2006)

Authors:

PG Freeman, AT Boothroyd, D Prabhakaran, J Lorenzana

Abstract:

We have studied the magnetization of a series of spin-charge-ordered La2-x Srx Ni O4+δ single crystals with 0≤x≤0.5. For fields applied parallel to the ab plane there is a large irreversibility below a temperature TF1 ∼50 K and a smaller irreversibility that persists up to near the charge-ordering temperature. We observed memory effects in the thermoremnant magnetization across the entire doping range. We found that these materials retain a memory of the temperature at which an external field was removed and that there is a pronounced increase in the thermoremnant magnetization when the system is warmed through a spin reorientation transition. © 2006 The American Physical Society.

Oxide muonics: I. Modelling the electrical activity of hydrogen in semiconducting oxides

Journal of Physics Condensed Matter 18:3 (2006) 1061-1078

Authors:

SFJ Cox, JS Lord, SP Cottrell, JM Gil, HV Alberto, A Keren, D Prabhakaran, R Scheuermann, A Stoykov

Abstract:

A shallow-to-deep instability of hydrogen defect centres in narrow-gap oxide semiconductors is revealed by a study of the electronic structure and electrical activity of their muonium counterparts, a methodology that we term 'muonics'. In CdO, Ag2O and Cu2O, paramagnetic muonium centres show varying degrees of delocalization of the singly occupied orbital, their hyperfine constants spanning 4 orders of magnitude. PbO and RuO 2, on the other hand, show only electronically diamagnetic muon states, mimicking those of interstitial protons. Muonium in CdO shows shallow-donor behaviour, dissociating between 50 and 150 K; the effective ionization energy of 0.1 eV is at some variance with the effective-mass model but illustrates the possibility of hydrogen doping, inducing n-type conductivity as in the wider-gap oxide, ZnO. For Ag2O, the principal donor level is deeper (0.25 eV) but ionization is nonetheless complete by room temperature. Striking examples of level-crossing and RF resonance spectroscopy reveal a more complex interplay of several metastable states in this case. In Cu2O, muonium has quasi-atomic character and is stable to 600 K, although the electron orbital is substantially more delocalized than in the trapped-atom states known in certain wide-gap dielectric oxides. Its eventual disappearance towards 900 K, with an effective ionization energy of 1 eV, defines an electrically active level near mid-gap in this material. © 2006 IOP Publishing Ltd.

On the ordering of Na+ ions in NaxCoO2

AIP CONF PROC 850 (2006) 1213-1214

Authors:

M Roger, DJP Morris, DA Tennant, MJ Gutmann, JP Goff, D Prabhakaran, N Shannon, B Lake, AT Boothroyd, R Coldea, P Deen

Abstract:

The influence of electrostatic interactions on the ordering of sodium ions in NaxCoO2 is studied theoretically through Monte-Carlo simulations. For large x small di- or tri-vacancy clusters are stable with respect to isolated Na vacancies. At commensurate fillings these small clusters order in triangular superstructures. These results agree with recent electron diffraction data at x = 1/2 and 3/4. We have performed neutron Laue diffraction experiments at higher x, which confirm the predictions of this simple model. The consequences on the properties of the electronic charges in the Co layers are discussed.