Depth-dependent magnetic crossover in a room-temperature skyrmion-hosting multilayer

Physical Review B American Physical Society (APS) 109:13 (2024) 134423

Authors:

Tj Hicken, Mn Wilson, Z Salman, Sl Zhang, Sjr Holt, T Prokscha, A Suter, Fl Pratt, G van der Laan, T Hesjedal, T Lancaster

Abstract:

Skyrmion-hosting multilayer stacks are promising avenues for applications, although little is known about the depth dependence of the magnetism. We address this by reporting the results of circular dichroic resonant elastic x-ray scattering (CD-REXS), micromagnetic simulations, and low-energy muon-spin rotation (LE-μ+SR) measurements on a stack comprising [Ta/CoFeB/MgO]16/Ta on a Si substrate. Energy-dependent CD-REXS shows a continuous, monotonic evolution of the domain-wall helicity angle with incident energy, consistent with a three-dimensional hybrid domain-wall-like structure that changes from Néel-like near the surface to Bloch-like deeper within the sample. LE-μ+SR reveals that the magnetic field distribution in the trilayers near the surface of the stack is distinct from that in trilayers deeper within the sample. Our micromagnetic simulations support a quantitative analysis of the μ+SR results. By increasing the applied magnetic field, we find a reduction in the volume occupied by domain walls at all depths, consistent with a crossover into a region dominated by skyrmions above approximately 180 mT.

Strain-Modulated Ferromagnetism at an Intrinsic van der Waals Heterojunction

Advanced Functional Materials 34: 36 (2024)

Authors:

Ryuji Fujita, Gautam Gurung, Mohamad-Assaad Mawass, Alevtina Smekhova, Florian Kronast, Alexander Kang-Jun Toh, Anjan Soumyanarayanan, Pin Ho, Angadjit Singh, Emily Heppell, Dirk Backes, Francesco Maccherozzi, Kenji Watanabe, Takashi Taniguchi, Daniel A. Mayoh, Geetha Balakrishnan, Gerrit van der Laan, Thorsten Hesjedal

Abstract:

Strain‐Modulated Ferromagnetism at an Intrinsic van der Waals Heterojunction

Advanced Functional Materials Wiley (2024)

Authors:

Ryuji Fujita, Gautam Gurung, Mohamad‐Assaad Mawass, Alevtina Smekhova, Florian Kronast, Alexander Kang‐Jun Toh, Anjan Soumyanarayanan, Pin Ho, Angadjit Singh, Emily Heppell, Dirk Backes, Francesco Maccherozzi, Kenji Watanabe, Takashi Taniguchi, Daniel A Mayoh, Geetha Balakrishnan, Gerrit van der Laan, Thorsten Hesjedal

Abstract:

AbstractThe van der Waals interaction enables atomically thin layers of exfoliated 2D materials to be interfaced in heterostructures with relaxed epitaxy conditions, however, the ability to exfoliate and freely stack layers without any strain or structural modification is by no means ubiquitous. In this work, the piezoelectricity of the exfoliated van der Waals piezoelectric α‐In2Se3 is utilized to modify the magnetic properties of exfoliated Fe3GeTe2, a van der Waals ferromagnet, resulting in increased domain wall density, reductions in the transition temperature ranging from 5 to 20 K, and an increase in the magnetic coercivity. Structural modifications at the atomic level are corroborated by a comparison to a graphite/α‐In2Se3 heterostructure, for which a decrease in the Tuinstra‐Koenig ratio is found. Magnetostrictive ferromagnetic domains are also observed, which may contribute to the enhanced magnetic coercivity. Density functional theory calculations and atomistic spin dynamic simulations show that the Fe3GeTe2 layer is compressively strained by 0.4%, reducing the exchange stiffness and magnetic anisotropy. The incorporation of α‐In2Se3 may be a general strategy to electrostatically strain interfaces within the paradigm of hexagonal boron nitride‐encapsulated heterostructures, for which the atomic flatness is both an intrinsic property and paramount requirement for 2D van der Waals heterojunctions.

Strain‐modulated ferromagnetism at an intrinsic van der Waals heterojunction

Advanced Functional Materials Wiley 34:36 (2024) 2400552

Authors:

Ryuji Fujita, Gautam Gurung, Mohamad‐Assaad Mawass, Alevtina Smekhova, Florian Kronast, Alexander Kang‐Jun Toh, Anjan Soumyanarayanan, Pin Ho, Angadjit Singh, Emily Heppell, Dirk Backes, Francesco Maccherozzi, Kenji Watanabe, Takashi Taniguchi, Daniel A Mayoh, Geetha Balakrishnan, Gerrit van der Laan, Thorsten Hesjedal

Abstract:

The van der Waals interaction enables atomically thin layers of exfoliated 2D materials to be interfaced in heterostructures with relaxed epitaxy conditions, however, the ability to exfoliate and freely stack layers without any strain or structural modification is by no means ubiquitous. In this work, the piezoelectricity of the exfoliated van der Waals piezoelectric α-In2Se3 is utilized to modify the magnetic properties of exfoliated Fe3GeTe2, a van der Waals ferromagnet, resulting in increased domain wall density, reductions in the transition temperature ranging from 5 to 20 K, and an increase in the magnetic coercivity. Structural modifications at the atomic level are corroborated by a comparison to a graphite/α-In2Se3 heterostructure, for which a decrease in the Tuinstra-Koenig ratio is found. Magnetostrictive ferromagnetic domains are also observed, which may contribute to the enhanced magnetic coercivity. Density functional theory calculations and atomistic spin dynamic simulations show that the Fe3GeTe2 layer is compressively strained by 0.4%, reducing the exchange stiffness and magnetic anisotropy. The incorporation of α-In2Se3 may be a general strategy to electrostatically strain interfaces within the paradigm of hexagonal boron nitride-encapsulated heterostructures, for which the atomic flatness is both an intrinsic property and paramount requirement for 2D van der Waals heterojunctions.

ARPES investigation of the electronic structure and its evolution in magnetic topological insulator MnBi2+2nTe4+3n family

Nature Physics Springer Nature 20:4 (2024) 571-578

Authors:

Dingsong Wu, Jiangang Yang, Jieyi Liu, Houke Chen, Yiheng Yang, Cheng Peng, Yulin Chen, Junjie Jia

Abstract:

The origin of high-temperature superconductivity in iron-based superconductors is still not understood; determination of the pairing symmetry is essential for understanding the superconductivity mechanism. In the iron-based superconductors that have hole pockets around the Brillouin zone centre and electron pockets around the zone corners, the pairing symmetry is generally considered to be s±, which indicates a sign change in the superconducting gap between the hole and electron pockets. For the iron-based superconductors with only hole pockets, however, a couple of pairing scenarios have been proposed, but the exact symmetry is still controversial. Here we determine that the pairing symmetry in KFe2As2—which is a prototypical iron-based superconductor with hole pockets both around the zone centre and around the zone corners—is also of the s± type. Our laser-based angle-resolved photoemission measurements have determined the superconducting gap distribution and identified the locations of the gap nodes on all the Fermi surfaces around the zone centres and the zone corners. These results unify the pairing symmetry in hole-doped iron-based superconductors and point to spin fluctuation as the pairing glue in generating superconductivity.