Ultraviolet Photodetector Based on Mg0.67Ni0.33O Thin Film on SrTiO3
physica status solidi (RRL) - Rapid Research Letters Wiley 14:8 (2020)
Proximity-induced odd-frequency superconductivity in a topological insulator
Physical Review Letters American Physical Society 125:2 (2020) 026802
Abstract:
At an interface between a topological insulator (TI) and a conventional superconductor (SC), superconductivity has been predicted to change dramatically and exhibit novel correlations. In particular, the induced superconductivity by an s-wave SC in a TI can develop an order parameter with a p-wave component. Here we present experimental evidence for an unexpected proximity-induced novel superconducting state in a thin layer of the prototypical TI, Bi2Se3 proximity coupled to Nb. From depthresolved magnetic field measurements below the superconducting transition temperature of Nb, we observe a local enhancement of the magnetic field in Bi2Se3 that exceeds the externally applied field, thus supporting the existence of an intrinsic paramagnetic Meissner effect arising from an odd-frequency superconducting state. Our experimental results are complemented by theoretical calculations supporting the appearance of such a component at the interface which extends into the TI. This state is topologically distinct from the conventional Bardeen-Cooper-Schrieffer state it originates from. To the best of our knowledge, these findings present a first observation of bulk odd-frequency superconductivity in a TI. We thus reaffirm the potential of the TI-SC interface as a versatile platform to produce novel superconducting states.Gate tunability of highly efficient spin-to-charge conversion by spin Hall effect in graphene proximitized with WSe2
APL Materials AIP Publishing 8:7 (2020) 071103
Exchange bias in magnetic topological insulator superlattices
Nano Letters American Chemical Society 20:7 (2020) 5315-5322
Abstract:
Magnetic doping and proximity coupling can open a band gap in a topological insulator (TI) and give rise to dissipationless quantum conduction phenomena. Here, by combining these two approaches, we demonstrate a novel TI superlattice structure that is alternately doped with transition and rare earth elements. An unexpected exchange bias effect is unambiguously confirmed in the superlattice with a large exchange bias field using magneto-transport and magneto-optical techniques. Further, the Curie temperature of the Cr-doped layers in the superlattice is found to increase by 60 K compared to a Cr-doped single-layer film. This result is supported by density-functional-theory calculations, which indicate the presence of antiferromagnetic ordering in Dy:Bi2Te3 induced by proximity coupling to Cr:Sb2Te3 at the interface. This work provides a new pathway to realizing the quantum anomalous Hall effect at elevated temperatures and axion insulator state at zero magnetic field by interface engineering in TI heterostructures.Spin Hall Effect in Bilayer Graphene Combined with an Insulator up to Room Temperature.
Nano letters 20:6 (2020) 4573-4579