Temperature dependence of the ferromagnetic response in CrxSb2-xTe3 topological insulator thin films investigated using terahertz spectroscopy and magneto-transport

Proceedings of SPIE Society of Photo-Optical Instrumentation Engineers 10917:2019 (2019)

Authors:

VS Kamboj, A Singh, L Jakob, Liam Duffy, N Idros, SP Senanayak, A Ionescu, HE Beere, CHW Barnes, Thorsten Hesjedal, DA Ritchie

Oriented Three-Dimensional Magnetic Biskyrmion in MnNiGa Bulk Crystals

(2019)

Authors:

Xiyang Li, Shilei Zhang, Hang Li, Diego Alba Venero, Jonathan S White, Robert Cubitt, Qingzhen Huang, Jie Chen, Lunhua He, Gerrit van der Laan, Wenhong Wang, Thorsten Hesjedal, Fangwei Wang

Anatomy of skyrmionic textures in magnetic multilayers

Advanced Materials Wiley 31:14 (2019) 1807683

Authors:

W Li, I Bykova, Shilei Zhang, G Yu, R Tomasello, M Carpentieri, Y Liu, Y Guang, J Graefe, M Weigand, DM Burn, G Van Der Laan, Thorsten Hesjedal, Z Yan, J Feng, C Wan, J Wei, X Wang, X Zhang, H Xu, C Guo, H Wei, G Finocchio, X Han, G Schuetz

Abstract:

Room temperature magnetic skyrmions in magnetic multilayers are considered as information carriers for future spintronic applications. Currently, a detailed understanding of the skyrmion stabilization mechanisms is still lacking in these systems. To gain more insight, it is first and foremost essential to determine the full real‐space spin configuration. Here, two advanced X‐ray techniques are applied, based on magnetic circular dichroism, to investigate the spin textures of skyrmions in [Ta/CoFeB/MgO] n multilayers. First, by using ptychography, a high‐resolution diffraction imaging technique, the 2D out‐of‐plane spin profile of skyrmions with a spatial resolution of 10 nm is determined. Second, by performing circular dichroism in resonant elastic X‐ray scattering, it is demonstrated that the chirality of the magnetic structure undergoes a depth‐dependent evolution. This suggests that the skyrmion structure is a complex 3D structure rather than an identical planar texture throughout the layer stack. The analyses of the spin textures confirm the theoretical predictions that the dipole–dipole interactions together with the external magnetic field play an important role in stabilizing sub‐100 nm diameter skyrmions and the hybrid structure of the skyrmion domain wall. This combined X‐ray‐based approach opens the door for in‐depth studies of magnetic skyrmion systems, which allows for precise engineering of optimized skyrmion heterostructures.

Room-Temperature Spin Hall Effect in Graphene/MoS2 van der Waals Heterostructures.

Nano letters 19:2 (2019) 1074-1082

Authors:

CK Safeer, Josep Ingla-Aynés, Franz Herling, José H Garcia, Marc Vila, Nerea Ontoso, M Reyes Calvo, Stephan Roche, Luis E Hueso, Fèlix Casanova

Abstract:

Graphene is an excellent material for long-distance spin transport but allows little spin manipulation. Transition-metal dichalcogenides imprint their strong spin-orbit coupling into graphene via the proximity effect, and it has been predicted that efficient spin-to-charge conversion due to spin Hall and Rashba-Edelstein effects could be achieved. Here, by combining Hall probes with ferromagnetic electrodes, we unambiguously demonstrate experimentally the spin Hall effect in graphene induced by MoS2 proximity and for varying temperatures up to room temperature. The fact that spin transport and the spin Hall effect occur in different parts of the same material gives rise to a hitherto unreported efficiency for the spin-to-charge voltage output. Additionally, for a single graphene/MoS2 heterostructure-based device, we evidence a superimposed spin-to-charge current conversion that can be indistinguishably associated with either the proximity-induced Rashba-Edelstein effect in graphene or the spin Hall effect in MoS2. By a comparison of our results to theoretical calculations, the latter scenario is found to be the most plausible one. Our findings pave the way toward the combination of spin information transport and spin-to-charge conversion in two-dimensional materials, opening exciting opportunities in a variety of future spintronic applications.

Skyrmions in anisotropic magnetic fields: strain and defect driven dynamics

MRS Advances Cambridge University Press 4:11-12 (2019) 643-650

Authors:

Richard Brearton, MW Olszewski, Shilei Zhang, Eskildsen, C Reichardt, CJO Reichardt, G Van Der Laan, Thorsten Hesjedal

Abstract:

Magnetic skyrmions are particle-like, topologically protected magnetization entities that are promising candidates for information carriers in racetrack-memory schemes. The transport of skyrmions in a shift-register-like fashion is crucial for their embodiment in practical devices. Recently, we demonstrated experimentally that chiral skyrmions in Cu2OSeO3 can be effectively manipulated by a magnetic field gradient, leading to a collective rotation of the skyrmion lattice with well-defined dynamics in a radial field gradient. Here, we employ a skyrmion particle model to numerically study the effects of resultant shear forces on the structure of the skyrmion lattice. We demonstrate that anisotropic peak broadening in experimentally observed diffraction patterns can be attributed to extended linear regions in the magnetic field profile. We show that topological (5-7) defects emerge to protect the six-fold symmetry of the lattice under the application of local shear forces, further enhancing the stability of proposed magnetic field driven devices.