Observation of the BKT Transition in a 2D Bose Gas via Matter-Wave Interferometry

(2021)

Authors:

Shinichi Sunami, Vijay P Singh, David Garrick, Abel Beregi, Adam J Barker, Kathrin Luksch, Elliot Bentine, Ludwig Mathey, Christopher J Foot

High-flux, adjustable, compact cold-atom source.

Optics express 29:14 (2021) 21143-21159

Authors:

Sean Ravenhall, Benjamin Yuen, Chris Foot

Abstract:

Magneto-optical traps (MOTs) are widely used for laser cooling of atoms. We have developed a high-flux compact cold-atom source based on a pyramid MOT with a unique adjustable aperture that is highly suitable for portable quantum technology devices, including space-based experiments. The adjustability enabled an investigation into the previously unexplored impact of aperture size on the atomic flux, and optimisation of the aperture size allowed us to demonstrate a higher flux than any reported cold-atom sources that use a pyramid, LVIS, 3D-MOT or grating MOT. We achieved 2.1(1) × 1010 atoms/s of 87Rb with a mean velocity of 32(1) m/s, FWHM of 27.6(9) m/s and divergence of 59(4) mrad. Halving the total optical power to 195 mW caused only a 20% reduction of the flux, and a 30% decrease in mean velocity. Methods to further decrease the velocity as required have been identified. The low power consumption and small size make this design suitable for a wide range of cold-atom technologies.

Room temperature atomic frequency comb storage for light

Optics Letters Optical Society of America 46:12 (2021) 2960-2960

Authors:

Dougal Main, Thomas Hird, Shaobo Gao, Ian Walmsley, Patrick Ledingham

Abstract:

We demonstrate coherent storage and retrieval of pulsed light using the atomic frequency comb protocol in a room temperature alkali vapor. We utilize velocity-selective optical pumping to prepare multiple velocity classes in the 𝐹=4 hyperfine ground state of cesium. The frequency spacing of the classes is chosen to coincide with the 𝐹′=4−𝐹′=5 hyperfine splitting of the 62P3/2 excited state, resulting in a broadband periodic absorbing structure consisting of two usually Doppler-broadened optical transitions. Weak coherent states of duration 2ns are mapped into this atomic frequency comb with pre-programmed recall times of 8ns and 12ns, with multi-temporal mode storage and recall demonstrated. Utilizing two transitions in the comb leads to an additional interference effect upon rephasing that enhances the recall efficiency.

Preparing narrow velocity distributions for quantum memories in room-temperature alkali-metal vapors

Physical Review A: American Physical Society 103 (2021) 043105

Authors:

Dougal Main, Thomas Hird, Patrick Ledingham, Dylan Saunders, Ian Walmsley, Shaobo Gao

Abstract:

Quantum memories are a crucial technology for enabling large-scale quantum networks through synchronization of probabilistic operations. Such networks impose strict requirements on quantum memory, such as storage time, retrieval efficiency, bandwidth, and scalability. On- and off-resonant ladder protocols on warm atomic vapor platforms are promising candidates, combining efficient high-bandwidth operation with low-noise on-demand retrieval. However, their storage time is severely limited by motion-induced dephasing caused by the broad velocity distribution of atoms composing the vapor. In this paper, we demonstrate velocity selective optical pumping to overcome this decoherence mechanism. This will increase the achievable memory storage time of vapor memories. This technique can also be used for preparing arbitrarily shaped absorption profiles, for instance, preparing an atomic frequency comb absorption feature.

Non-equilibrium dynamics of a 2D Bose gas near a critical point

(2021)

Authors:

Shinichi SUNAMI, David Garrick, Abel BEREGI, Elliot BENTINE, CHRISTOPHER FOOT

Abstract:

APS March Meeting focus session talk