Preparing Narrow Velocity Distributions for Quantum Memories in Room-Temperature Alkali Vapours

(2020)

Authors:

D Main, TM Hird, S Gao, E Oguz, DJ Saunders, IA Walmsley, PM Ledingham

Room Temperature Atomic Frequency Comb Memory for Light

(2020)

Authors:

D Main, TM Hird, S Gao, IA Walmsley, PM Ledingham

Coherent splitting of two-dimensional Bose gases in magnetic potentials

New Journal of Physics IOP Publishing 22:10 (2020) 103040

Authors:

Aj Barker, S Sunami, D Garrick, A Beregi, K Luksch, E Bentine, Cj Foot

Abstract:

Investigating out-of-equilibrium dynamics with two-dimensional (2D) systems is of widespread theoretical interest, as these systems are strongly influenced by fluctuations and there exists a superfluid phase transition at a finite temperature. In this work, we realise matter-wave interference for degenerate Bose gases, including the first demonstration of coherent splitting of 2D Bose gases using magnetic trapping potentials. We improve the fringe contrast by imaging only a thin slice of the expanded atom clouds, which will be necessary for subsequent studies on the relaxation of the gas following a quantum quench.

Coherent splitting of two-dimensional Bose gases in magnetic potentials

New Journal of Physics 22:10 (2020) 103040-103040

Authors:

Aj Barker, S Sunami, D Garrick, A Beregi, K Luksch, E Bentine, Cj Foot

Abstract:

Investigating out-of-equilibrium dynamics with two-dimensional (2D) systems is of widespread theoretical interest, as these systems are strongly influenced by fluctuations and there exists a superfluid phase transition at a finite temperature. In this work, we realise matter-wave interference for degenerate Bose gases, including the first demonstration of coherent splitting of 2D Bose gases using magnetic trapping potentials. We improve the fringe contrast by imaging only a thin slice of the expanded atom clouds, which will be necessary for subsequent studies on the relaxation of the gas following a quantum quench.

Realising a species-selective double well with multiple-radiofrequency-dressed potentials

Journal of Physics B: Atomic, Molecular and Optical Physics IOP Publishing 53:15 (2020) 155001

Authors:

Aj Barker, S Sunami, D Garrick, A Beregi, K Luksch, E Bentine, Cj Foot

Abstract:

Techniques to manipulate the individual constituents of an ultracold mixture are key to investigating impurity physics. In this work, we confine a mixture of hyperfine ground states of 87Rb atoms in a double-well potential. The potential is produced by dressing the atoms with multiple radiofrequencies. The amplitude and phase of each frequency component of the dressing field are controlled to independently manipulate each species. Furthermore, we verify that our mixture of hyperfine states is collisionally stable, with no observable inelastic loss.