Thermally activated structural phase transitions and processes in metal-organic frameworks.

Chemical Society reviews 53:7 (2024) 3606-3629

Authors:

Celia Castillo-Blas, Ashleigh M Chester, David A Keen, Thomas D Bennett

Abstract:

The structural knowledge of metal-organic frameworks is crucial to the understanding and development of new efficient materials for industrial implementation. This review classifies and discusses recent advanced literature reports on phase transitions that occur during thermal treatments on metal-organic frameworks and their characterisation. Thermally activated phase transitions and procceses are classified according to the temperaturatures at which they occur: high temperature (reversible and non-reversible) and low temperature. In addition, theoretical calculations and modelling approaches employed to better understand these structural phase transitions are also reviewed.

Magnetotransport of Sm2Ir2O7 across the pressure-induced quantum-critical phase boundary

npj Quantum Materials Springer Nature 9:1 (2024) 17

Authors:

MJ Coak, K Götze, T Northam De La Fuente, C Castelnovo, JP Tidey, J Singleton, AT Boothroyd, D Prabhakaran, PA Goddard

Weyl metallic state induced by helical magnetic order

npj Quantum Materials Springer Nature 9:1 (2024) 7

Authors:

Jian-Rui Soh, Irián Sánchez-Ramírez, Xupeng Yang, Jinzhao Sun, Ivica Zivkovic, Jose Alberto Rodríguez-Velamazán, Oscar Fabelo, Anne Stunault, Alessandro Bombardi, Christian Balz, Manh Duc Le, Helen C Walker, J Hugo Dil, Dharmalingam Prabhakaran, Henrik M Rønnow, Fernando de Juan, Maia G Vergniory, Andrew T Boothroyd

Abstract:

In the rapidly expanding field of topological materials there is growing interest in systems whose topological electronic band features can be induced or controlled by magnetism. Magnetic Weyl semimetals, which contain linear band crossings near the Fermi level, are of particular interest owing to their exotic charge and spin transport properties. Up to now, the majority of magnetic Weyl semimetals have been realized in ferro- or ferrimagnetically ordered compounds, but a disadvantage of these materials for practical use is their stray magnetic field which limits the minimum size of devices. Here we show that Weyl nodes can be induced by a helical spin configuration, in which the magnetization is fully compensated. Using a combination of neutron diffraction and resonant elastic x-ray scattering, we find that below TN = 14.5 K the Eu spins in EuCuAs develop a planar helical structure which induces two quadratic Weyl nodes with Chern numbers C = ±2 at the A point in the Brillouin zone.

Orientational order/disorder and network flexibility in deuterated methylammonium lead iodide perovskite by neutron total scattering

Journal of Materials Chemistry A Royal Society of Chemistry (RSC) (2024)

Authors:

Jiaxun Liu, Juan Du, Peter B Wyatt, David A Keen, Anthony E Phillips, Martin T Dove

Siliceous zeolite-derived topology of amorphous silica.

Communications chemistry 6:1 (2023) 269

Authors:

Hirokazu Masai, Shinji Kohara, Toru Wakihara, Yuki Shibazaki, Yohei Onodera, Atsunobu Masuno, Sohei Sukenaga, Koji Ohara, Yuki Sakai, Julien Haines, Claire Levelut, Philippe Hébert, Aude Isambert, David A Keen, Masaki Azuma

Abstract:

The topology of amorphous materials can be affected by mechanical forces during compression or milling, which can induce material densification. Here, we show that densified amorphous silica (SiO2) fabricated by cold compression of siliceous zeolite (SZ) is permanently densified, unlike densified glassy SiO2 (GS) fabricated by cold compression although the X-ray diffraction data and density of the former are identical to those of the latter. Moreover, the topology of the densified amorphous SiO2 fabricated from SZ retains that of crystalline SZ, whereas the densified GS relaxes to pristine GS after thermal annealing. These results indicate that it is possible to design new functional amorphous materials by tuning the topology of the initial zeolitic crystalline phases.