High-quality ultra-fast total scattering and pair distribution function data using an X-ray free electron laser

IUCrJ International Union of Crystallography 12:5 (2025) 12

Authors:

Adam F Sapnik, Philip A Chater, Dean S Keeble, Elodie Harbourne, Andrew Goodwin, Celine Crepisson, Justin Wark

Abstract:

High-quality total scattering data, a key tool for understanding atomic-scale structure in disordered materials, require stable instrumentation and access to high momentum transfers. This is now routine at dedicated synchrotron instrumentation using high-energy X-ray beams, but it is very challenging to measure a total scattering dataset in less than a few microseconds. This limits their effectiveness for capturing structural changes that occur at the much faster timescales of atomic motion. Current X-ray free-electron lasers (XFELs) provide femtosecond-pulsed X-ray beams with maximum energies of ~24 keV, giving the potential to measure total scattering and the attendant pair distribution functions (PDFs) on femtosecond timescales. Here, we show that this potential has been realised using the HED scientific instrument at the European XFEL and present normalised total scattering data for 0.35Å−1 < Q < 16.6Å−1 and their PDFs from a broad spectrum of materials, including crystalline, nanocrystalline and amorphous solids, liquids, and clusters in solution. We analyse the data using a variety of methods, including Rietveld refinement, small-box PDF refinement, joint reciprocal–real space refinement, cluster refinement, and Debye scattering analysis. The resolution function of the setup is also characterised. We conclusively show that high-quality data can be obtained from a single ~30 fs XFEL pulse for multiple different sample types. Our efforts not only significantly increase the existing maximum reported Q-range for an S(Q) measured at an XFEL but also mean that XFELs are now a viable X-ray source for the broad community of people using reciprocal space total scattering and PDF methods in their research.

Collinear Jahn-Teller Ordering Induces Monoclinic Distortion in "Defect-Free" LiNiO<sub>2</sub>.

Journal of the American Chemical Society (2025)

Authors:

George S Phillips, James MA Steele, Farheen N Sayed, Leonhard Karger, Liam AV Nagle-Cocco, Annalena R Genreith-Schriever, Gabriel E Pérez, David A Keen, Jürgen Janek, Torsten Brezesinski, Joshua D Bocarsly, Siân E Dutton, Clare P Grey

Abstract:

Lithium nickel oxide, LiNiO2 (LNO), and its doped derivatives are promising battery cathode materials with high gravimetric capacity and operating voltages. They are also of interest to the field of quantum magnetism due to the presumed S = 1/2 triangular lattice and associated geometric frustration. However, the tendency for Li/Ni substitutional defects and off-stoichiometry makes fundamental studies challenging. In particular, there is still a discrepancy between the rhombohedral (Rm) bulk structure and the Jahn-Teller (JT) distortions of the NiO6 octahedra inferred on the basis of local structural probes. Karger et al. (Chem. Mater. 2023, 35, 648-657) recently used Na/Li ion exchange to synthesize "defect-free" LNO by exploiting the absence of antisite disorder in NaNiO2 (NNO). Here we characterize the short- and long-range structure of this ion-exchanged material and observe splittings of key Bragg reflections at 100 K in X-ray and neutron diffraction (XRD and NPD), indicative of a monoclinic distortion induced by a cooperative collinear JT distortion, similar to that seen in NNO. Variable temperature XRD reveals a second-order phase transition from the monoclinic (C2/m) low-temperature structure to a rhombohedral (Rm) structure above ∼400 K. We propose that this collinear JT ordering is also present in solid-state synthesized LNO with the domain size and extent of monoclinic distortion controlled by defect concentration. This new structural description of LNO will help advance our understanding of its electronic and magnetic properties and the series of phase transformations that this material undergoes upon electrochemical cycling in Li-ion batteries.

Melt-quenched synthesis of a manganese ZIF glass.

Chemical communications (Cambridge, England) (2025)

Authors:

Luis León-Alcaide, Alberto Fernández-Alarcón, Joaquín Calbo, David A Keen, Guillermo Mínguez Espallargas

Abstract:

In this work we expand the family of ZIFs capable of being melt-quenched into a vitreous phase with the first Mn-based glass. This is achieved by preparing two new Mn-based ZIFs with topologies dia-c and znivia solvent-free synthesis and subsequent melting. This study also provides a direct comparison of metal effects on melting and decomposition behaviour, highlighting the relationship between bond strength and thermal properties.

Stabilisation and functional enhancement of a metal-organic framework purinate-glass composite.

Chemical communications (Cambridge, England) (2025)

Authors:

Yujun Rong, Ashleigh M Chester, Bethan Turner, Georgina P Robertson, Ayano Kono, Philip A Chater, Lauren N McHugh, David A Keen, Thomas D Bennett, Celia Castillo-Blas

Abstract:

The development of metal-organic framework (MOF) crystal-glass composites (CGCs) has been hindered by the scarcity of MOF glass matrices with low glass transition temperatures (Tgs). Here, we investigate a CGC consisting of a low-Tg MOF glass (agZIF-UC-7) and UiO-66. Powder X-ray diffraction and stability tests in phosphate buffer saline solution showed UiO-66 was stabilised in the glass matrix. Additionally, the composite exhibited enhanced dye uptake and gas adsorption relative to agZIF-UC-7.

The structure of liquid carbon elucidated by in situ X-ray diffraction

Nature Nature Research 642:8067 (2025) 351-355

Authors:

D Kraus, J Rips, M Schörner, MG Stevenson, J Vorberger, D Ranjan, J Lütgert, B Heuser, JH Eggert, H-P Liermann, II Oleynik, S Pandolfi, R Redmer, A Sollier, C Strohm, TJ Volz, B Albertazzi, SJ Ali, L Antonelli, C Bähtz, OB Ball, S Banerjee, AB Belonoshko, CA Bolme

Abstract:

Carbon has a central role in biology and organic chemistry, and its solid allotropes provide the basis of much of our modern technology1. However, the liquid form of carbon remains nearly uncharted2, and the structure of liquid carbon and most of its physical properties are essentially unknown3. But liquid carbon is relevant for modelling planetary interiors4, 5 and the atmospheres of white dwarfs6, as an intermediate state for the synthesis of advanced carbon materials7, 8, inertial confinement fusion implosions9, hypervelocity impact events on carbon materials10 and our general understanding of structured fluids at extreme conditions11. Here we present a precise structure measurement of liquid carbon at pressures of around 1 million atmospheres obtained by in situ X-ray diffraction at an X-ray free-electron laser. Our results show a complex fluid with transient bonding and approximately four nearest neighbours on average, in agreement with quantum molecular dynamics simulations. The obtained data substantiate the understanding of the liquid state of one of the most abundant elements in the universe and can test models of the melting line. The demonstrated experimental abilities open the path to performing similar studies of the structure of liquids composed of light elements at extreme conditions.