Impact of mixed anion ordered state on the magnetic ground states of S=1/2 square-lattice quantum spin antiferromagnets, Sr2NiO3Cl and Sr2NiO3F

Physical Review Materials American Physical Society 6:11 (2022) 114404

Authors:

Y Tsujimoto, J Sugiyama, M Ochi, K Kuroki, P Manuel, Dd Khalyavin, I Umegaki, M Månsson, D Andreica, S Hara, T Sakurai, S Okubo, H Ohta, At Boothroyd, K Yamaura

Abstract:

The magnetic properties of the S=1/2 two-dimensional square-lattice antiferromagnets Sr2NiO3X (X=Cl, F) with the trivalent nickel ions in a low-spin state were studied by magnetic susceptibility, heat capacity, neutron powder diffraction, high-field electron spin resonance (ESR), muon spin rotation and relaxation (μ+SR) measurements, and density functional theory (DFT) calculations. Both oxyhalides are isostructural to an ideal quantum square-lattice antiferromagnet Sr2CuO2Cl2, but the chlorine/fluorine anion exclusively occupies an apical site in an ordered/disordered manner with an oxygen anion, resulting in the formation of highly distorted NiO5X octahedra with an off-center nickel ion. Magnetic susceptibility measurements revealed a remarkable difference between these two compounds: the magnetic susceptibility of Sr2NiO3Cl exhibited a broad maximum at approximately 35 K, which is typical of low-dimensional antiferromagnetic behavior. In contrast, the magnetic susceptibility of Sr2NiO3F exhibited spin-glass-like behavior below 12 K. No anomaly associated with long-range magnetic ordering was observed in the heat capacity, ESR, and neutron powder diffraction experiments. However, μ+SR measurements revealed the emergence of a static magnetic ordered state below TN=28K in Sr2NiO3Cl and a short-range magnetic state below TN=18K in Sr2NiO3F. The DFT calculations suggested that the unpaired electron occupied a d3z2-r2 orbital, and ferromagnetic couplings between the nearest-neighbor nickel spins were energetically favored. The mechanism of ferromagnetic superexchange interactions and the reason for the difference between the magnetic ground states in these nickel oxyhalides are discussed.

Room-temperature type-II multiferroic phase induced by pressure in cupric oxide

Physical Review Letters American Physical Society 129 (2022) 217601

Authors:

Noriki Terada, Dmitry Khalyavin, Pascal Manuel, Fabio Orlandi, Christopher Ridley, Craig Bull, Ryota Ono, Igor Solovyev, Dharmalingam Prabhakaran, Andrew Boothroyd

Abstract:

According to previous theoretical work, the binary oxide CuO can become a room temperature multiferroic via tuning of the superexchange interactions by application of pressure. Thus far, however, there has been no experimental evidence for the predicted room-temperature multiferroicity. Here, we show by neutron diffraction that the multiferroic phase in CuO reaches 295 K with the application of 18.5 GPa pressure. We also develop a spin Hamiltonian based on density functional theory and employing superexchange theory for the magnetic interactions, which can reproduce the experimental results. The present study provides a stimulus to develop room-temperature multiferroic materials by alternative methods based on existing low temperature compounds, such as epitaxial strain, for tunable multifunctional devices and memory applications.

Mapping short-range order at the nanoscale in metal-organic framework and inorganic glass composites.

Nanoscale 14:44 (2022) 16524-16535

Authors:

Joonatan EM Laulainen, Duncan N Johnstone, Ivan Bogachev, Louis Longley, Courtney Calahoo, Lothar Wondraczek, David A Keen, Thomas D Bennett, Sean M Collins, Paul A Midgley

Abstract:

Characterization of nanoscale changes in the atomic structure of amorphous materials is a profound challenge. Established X-ray and neutron total scattering methods typically provide sufficient signal quality only over macroscopic volumes. Pair distribution function analysis using electron scattering (ePDF) in the scanning transmission electron microscope (STEM) has emerged as a method of probing nanovolumes of these materials, but inorganic glasses as well as metal-organic frameworks (MOFs) and many other materials containing organic components are characteristically prone to irreversible changes after limited electron beam exposures. This beam sensitivity requires 'low-dose' data acquisition to probe inorganic glasses, amorphous and glassy MOFs, and MOF composites. Here, we use STEM-ePDF applied at low electron fluences (10 e- Å-2) combined with unsupervised machine learning methods to map changes in the short-range order with ca. 5 nm spatial resolution in a composite material consisting of a zeolitic imidazolate framework glass agZIF-62 and a 0.67([Na2O]0.9[P2O5])-0.33([AlO3/2][AlF3]1.5) inorganic glass. STEM-ePDF enables separation of MOF and inorganic glass domains from atomic structure differences alone, showing abrupt changes in atomic structure at interfaces with interatomic correlation distances seen in X-ray PDF preserved at the nanoscale. These findings underline that the average bulk amorphous structure is retained at the nanoscale in the growing family of MOF glasses and composites, a previously untested assumption in PDF analyses crucial for future non-crystalline nanostructure engineering.

Formation of new crystalline qtz-[Zn(mIm)2] polymorph from amorphous ZIF-8.

Chemical communications (Cambridge, England) 58:85 (2022) 11949-11952

Authors:

Michael F Thorne, Celia Castillo-Blas, Celia Castillo-Blas, Lauren N McHugh, Alice M Bumstead, Georgina Robertson, Adam F Sapnik, Chloe S Coates, Farheen N Sayed, Clare P Grey, David A Keen, Martin Etter, Ivan da Silva, Krunoslav Užarević, Thomas D Bennett

Abstract:

The structure of a new ZIF-8 polymorph with quartz topology (qtz) is reported. This qtz-[Zn(mIm)2] phase was obtained by mechanically amorphising crystalline ZIF-8, before heating the resultant amorphous phase to between 282 and 316 °C. The high-temperature phase structure was obtained from powder X-ray diffraction, and its thermal behaviour, CO2 gas sorption properties and dye adsorption ability were investigated.

Modeling the Effect of Defects and Disorder in Amorphous Metal-Organic Frameworks.

Chemistry of materials : a publication of the American Chemical Society 34:20 (2022) 9042-9054

Authors:

Irene Bechis, Adam F Sapnik, Andrew Tarzia, Emma H Wolpert, Matthew A Addicoat, David A Keen, Thomas D Bennett, Kim E Jelfs

Abstract:

Amorphous metal-organic frameworks (aMOFs) are a class of disordered framework materials with a defined local order given by the connectivity between inorganic nodes and organic linkers, but absent long-range order. The rational development of function for aMOFs is hindered by our limited understanding of the underlying structure-property relationships in these systems, a consequence of the absence of long-range order, which makes experimental characterization particularly challenging. Here, we use a versatile modeling approach to generate in silico structural models for an aMOF based on Fe trimers and 1,3,5-benzenetricarboxylate (BTC) linkers, Fe-BTC. We build a phase space for this material that includes nine amorphous phases with different degrees of defects and local order. These models are analyzed through a combination of structural analysis, pore analysis, and pair distribution functions. Therefore, we are able to systematically explore the effects of the variation of each of these features, both in isolation and combined, for a disordered MOF system, something that would not be possible through experiment alone. We find that the degree of local order has a greater impact on structure and properties than the degree of defects. The approach presented here is versatile and allows for the study of different structural features and MOF chemistries, enabling the derivation of design rules for the rational development of aMOFs.