The Ultraviolet Attenuation Law in Backlit Spiral Galaxies

ArXiv 1401.0773 (2014)

Authors:

William C Keel, Anna M Manning, Benne W Holwerda, Chris J Lintott, Kevin Schawinski

Abstract:

(Abridged) The effective extinction law (attenuation behavior) in galaxies in the emitted ultraviolet is well known only for actively star-forming objects and combines effects of the grain properties, fine structure in the dust distribution, and relative distributions of stars and dust. We use GALEX, XMM Optical Monitor, and HST data to explore the UV attenuation in the outer parts of spiral disks which are backlit by other UV-bright galaxies, starting with candidates provided by Galaxy Zoo participants. Our analysis incorporates galaxy symmetry, using non-overlapping regions of each galaxy to derive error estimates on the attenuation measurements. The entire sample has an attenuation law close to the Calzetti et al. (1994) form; the UV slope for the overall sample is substantially shallower than found by Wild et al. (2011), a reasonable match to the more distant galaxies in our sample but not to the weighted combination including NGC 2207. The nearby, bright spiral NGC 2207 alone gives accuracy almost equal to the rest of our sample, and its outer arms have a very low level of foreground starlight. This "grey" law can be produced from the distribution of dust alone, without a necessary contribution from differential escape of stars from dense clouds. The extrapolation needed to compare attenution between backlit galaxies at moderate redshifts, and local systems from SDSS data, is mild enough to allow use of galaxy overlaps to trace the cosmic history of dust. For NGC 2207, the covering factor of clouds with small optical attenuation becomes a dominant factor farther into the ultraviolet, which opens the possibility that widespread diffuse dust dominates over dust in star-forming regions deep into the ultraviolet. Comparison with published radiative-transfer models indicates that the role of dust clumping dominates over differences in grain populations, at this spatial resolution.

Playing with science: Gamised aspects of gamification found on the online citizen science project - Zooniverse

15th International Conference on Intelligent Games and Simulation, GAME-ON 2014 (2014) 15-22

Authors:

A Greennhill, K Holmes, C Lintott, B Simmons, K Masters, J Cox, G Graham

Abstract:

This paper examines incidents of play, socialisation, fun and amusement to consider how these forms of social interaction relate to the serious gaming elements of the citizen science platform. Through an ethnographic study we reveal how participants of citizen science projects demonstrate aspccts of 'Gamiscd' behaviour. 'Gamised' behaviour is defined as user generated play in a digital platform and contrasts to incidents of 'gamification∗ where a platform designer purposely embeds games into a computer platform. The paper therefore examines incidents of play, socialisation, fun and amusement and compares them with the serious gaming elements of the citizen science platform.

The Mrk 231 molecular outflow as seen in OH

Astronomy and Astrophysics 561 (2014)

Authors:

E González-Alfonso, J Fischer, J Graciá-Carpio, N Falstad, E Sturm, M Meléndez, HWW Spoon, A Verma, RI Davies, D Lutz, S Aalto, E Polisensky, A Poglitsch, S Veilleux, A Contursi

Abstract:

We report on the Herschel/PACS observations of OH in Mrk 231, with detections in nine doublets observed within the PACS range, and present radiative-transfer models for the outflowing OH. Clear signatures of outflowing gas are found in up to six OH doublets with different excitation requirements. At least two outflowing components are identified, one with OH radiatively excited, and the other with low excitation, presumably spatially extended and roughly spherical. Particularly prominent, the blue wing of the absorption detected in the in-ladder 2Π3/2J= 9/2 - 7/2 OH doublet at 65 μm, with Elower = 290 K, indicates that the excited outflowing gas is generated in a compact and warm (circum)nuclear region. Because the excited, outflowing OH gas in Mrk 231 is associated with the warm, far-infrared continuum source, it is most likely more compact (diameter of ~200-300 pc) than that probed by CO and HCN. Nevertheless, its mass-outflow rate per unit of solid angle as inferred from OH is similar to that previously derived from CO, ≥ 70 × (2.5 × 10-6/XOH) M yr-1 sr-1, where XOH is the OH abundance relative to H nuclei. In spherical symmetry, this would correspond to ≥850 × (2.5 × 10-6/XOH) M yr-1, though significant collimation is inferred from the line profiles. The momentum flux of the excited component attains ~15 LAGN/c, with an OH column density of (1.5-3) × 1017 cm-2 and a mechanical luminosity of ~1011L. In addition, the detection of very excited, radiatively pumped OH peaking at central velocities indicates the presence of a nuclear reservoir of gas rich in OH, plausibly the 130 pc scale circumnuclear torus previously detected in OH megamaser emission, that may be feeding the outflow. An exceptional 18OH enhancement, with OH/18OH ≤ 30 at both central and blueshifted velocities, is most likely the result of interstellar-medium processing by recent starburst and supernova activity within the circumnuclear torus or thick disk. © ESO, 2013.

Galaxy Zoo: Observing Secular Evolution Through Bars

STRUCTURE AND DYNAMICS OF DISK GALAXIES 480 (2014) 165-169

Authors:

Edmond Cheung, E Athanassoula, Karen L Masters, Robert C Nichol, A Bosma, Eric F Bell, SM Faber, David C Koo, Chris Lintott, Thomas Melvin, Kevin Schawinski, Ramin A Skibba, Kyle W Willett

Gravitational lens models based on Submillimeter Array Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.-selected strongly lensed sub-millimeter galaxies at z > 1.5

Astrophysical Journal 779:1 (2013)

Authors:

RS Bussmann, I Pérez-Fournon, S Amber, J Calanog, MA Gurwell, H Dannerbauer, F De Bernardis, H Fu, AI Harris, M Krips, A Lapi, R Maiolino, A Omont, D Riechers, J Wardlow, AJ Baker, M Birkinshaw, J Bock, N Bourne, DL Clements, A Cooray, G De Zotti, L Dunne, S Dye, S Eales, D Farrah, R Gavazzi, J González Nuevo, R Hopwood, E Ibar, RJ Ivison, N Laporte, S Maddox, P Martínez-Navajas, M Michalowski, M Negrello, SJ Oliver, IG Roseboom, D Scott, S Serjeant, AJ Smith, M Smith, A Streblyanska, E Valiante, P Van Der Werf, A Verma, JD Vieira, L Wang, D Wilner

Abstract:

Strong gravitational lenses are now being routinely discovered in wide-field surveys at (sub-)millimeter wavelengths. We present Submillimeter Array (SMA) high-spatial resolution imaging and Gemini-South and Multiple Mirror Telescope optical spectroscopy of strong lens candidates discovered in the two widest extragalactic surveys conducted by the Herschel Space Observatory: the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS) and the Herschel Multi-tiered Extragalactic Survey (HerMES). From a sample of 30 Herschel sources with S 500 > 100 mJy, 21 are strongly lensed (i.e., multiply imaged), 4 are moderately lensed (i.e., singly imaged), and the remainder require additional data to determine their lensing status. We apply a visibility-plane lens modeling technique to the SMA data to recover information about the masses of the lenses as well as the intrinsic (i.e., unlensed) sizes (r half) and far-infrared luminosities (L FIR) of the lensed submillimeter galaxies (SMGs). The sample of lenses comprises primarily isolated massive galaxies, but includes some groups and clusters as well. Several of the lenses are located at z lens > 0.7, a redshift regime that is inaccessible to lens searches based on Sloan Digital Sky Survey spectroscopy. The lensed SMGs are amplified by factors that are significantly below statistical model predictions given the 500 μm flux densities of our sample. We speculate that this may reflect a deficiency in our understanding of the intrinsic sizes and luminosities of the brightest SMGs. The lensed SMGs span nearly one decade in L FIR (median L FIR = 7.9 × 10 12 L ) and two decades in FIR luminosity surface density (median ΣFIR = 6.0 × 1011 L kpc-2). The strong lenses in this sample and others identified via (sub-)mm surveys will provide a wealth of information regarding the astrophysics of galaxy formation and evolution over a wide range in redshift. © 2013. The American Astronomical Society. All rights reserved..