Galaxy Zoo: A Catalog of Overlapping Galaxy Pairs for Dust Studies

ArXiv 1211.6723 (2012)

Authors:

William C Keel, Anna Manning, Benne W Holwerda, Massimo Mezzoprete, Chris J Lintott, Kevin Schawinski, Pamela Gay, Karen L Masters

Abstract:

Analysis of galaxies with overlapping images offers a direct way to probe the distribution of dust extinction and its effects on the background light. We present a catalog of 1990 such galaxy pairs selected from the Sloan Digital Sky Survey (SDSS) by volunteers of the Galaxy Zoo project. We highlight subsamples which are particularly useful for retrieving such properties of the dust distribution as UV extinction, the extent perpendicular to the disk plane, and extinction in the inner parts of disks. The sample spans wide ranges of morphology and surface brightness, opening up the possibility of using this technique to address systematic changes in dust extinction or distribution with galaxy type. This sample will form the basis for forthcoming work on the ranges of dust distributions in local disk galaxies, both for their astrophysical implications and as the low-redshift part of a study of the evolution of dust properties. Separate lists and figures show deep overlaps, where the inner regions of the foreground galaxy are backlit, and the relatively small number of previously-known overlapping pairs outside the SDSS DR7 sky coverage.

Planet Hunters: A Transiting Circumbinary Planet in a Quadruple Star System

ArXiv 1210.3612 (2012)

Authors:

Megan E Schwamb, Jerome A Orosz, Joshua A Carter, William F Welsh, Debra A Fischer, Guillermo Torres, Andrew W Howard, Justin R Crepp, William C Keel, Chris J Lintott, Nathan A Kaib, Dirk Terrell, Robert Gagliano, Kian J Jek, Michael Parrish, Arfon M Smith, Stuart Lynn, Robert J Simpson, Matthew J Giguere, Kevin Schawinski

Abstract:

We report the discovery and confirmation of a transiting circumbinary planet (PH1b) around KIC 4862625, an eclipsing binary in the Kepler field. The planet was discovered by volunteers searching the first six Quarters of publicly available Kepler data as part of the Planet Hunters citizen science project. Transits of the planet across the larger and brighter of the eclipsing stars are detectable by visual inspection every ~137 days, with seven transits identified in Quarters 1-11. The physical and orbital parameters of both the host stars and planet were obtained via a photometric-dynamical model, simultaneously fitting both the measured radial velocities and the Kepler light curve of KIC 4862625. The 6.18 +/- 0.17 Earth radii planet orbits outside the 20-day orbit of an eclipsing binary consisting of an F dwarf (1.734 +/- 0.044 Solar radii, 1.528 +/- 0.087 Solar masses) and M dwarf (0.378+/- 0.023 Solar radii, 0.408 +/- 0.024 Solar masses). For the planet, we find an upper mass limit of 169 Earth masses (0.531 Jupiter masses) at the 99.7% confidence level. With a radius and mass less than that of Jupiter, PH1b is well within the planetary regime. Outside the planet's orbit, at ~1000 AU,a previously unknown visual binary has been identified that is likely bound to the planetary system, making this the first known case of a quadruple star system with a transiting planet.

Measurements of CO redshifts with Z-spec for lensed submillimeter galaxies discovered in the H-atlas survey

Astrophysical Journal 757:2 (2012)

Authors:

RE Lupu, KS Scott, JE Aguirre, I Aretxaga, R Auld, E Barton, A Beelen, F Bertoldi, JJ Bock, D Bonfield, CM Bradford, S Buttiglione, A Cava, DL Clements, J Cooke, A Cooray, H Dannerbauer, A Dariush, G De Zotti, L Dunne, S Dye, S Eales, D Frayer, J Fritz, J Glenn, DH Hughes, E Ibar, RJ Ivison, MJ Jarvis, J Kamenetzky, S Kim, G Lagache, L Leeuw, S Maddox, PR Maloney, H Matsuhara, EJ Murphy, BJ Naylor, M Negrello, H Nguyen, A Omont, E Pascale, M Pohlen, E Rigby, G Rodighiero, S Serjeant, D Smith, P Temi, M Thompson, I Valtchanov, A Verma, JD Vieira, J Zmuidzinas

Abstract:

We present new observations from Z-Spec, a broadband 185-305GHz spectrometer, of five submillimeter bright lensed sources selected from the Herschel-Astrophysical Terahertz Large Area Survey science demonstration phase catalog. We construct a redshift-finding algorithm using combinations of the signal to noise of all the lines falling in the Z-Spec bandpass to determine redshifts with high confidence, even in cases where the signal to noise in individual lines is low. We measure the dust continuum in all sources and secure CO redshifts for four out of five (z 1.5-3). In one source, SDP.17, we tentatively identify two independent redshifts and a water line, confirmed at z = 2.308. Our sources have properties characteristic of dusty starburst galaxies, with magnification-corrected star formation rates of 102-3 M ⊙ yr-1. Lower limits for the dust masses (∼a few 108 M ⊙) and spatial extents (1kpc equivalent radius) are derived from the continuum spectral energy distributions, corresponding to dust temperatures between 54 and 69K. In the local thermodynamic equilibrium (LTE) approximation, we derive relatively low CO excitation temperatures (≲ 100 K) and optical depths (τ ≲ 1). Performing a non-LTE excitation analysis using RADEX, we find that the CO lines measured by Z-Spec (from J = 4 → 3 to 10 → 9, depending on the galaxy) localize the best solutions to either a high-temperature/low-density region or a low/temperature/high-density region near the LTE solution, with the optical depth varying accordingly. Observations of additional CO lines, CO(1-0) in particular, are needed to constrain the non-LTE models. © 2012. The American Astronomical Society. All rights reserved.

A detailed gravitational lens model based on Submillimeter Array and Keck adaptive optics imaging of a Herschel-atlas submillimeter galaxy at z = 4.243

Astrophysical Journal 756:2 (2012)

Authors:

RS Bussmann, MA Gurwell, H Fu, DJB Smith, S Dye, R Auld, M Baes, AJ Baker, D Bonfield, A Cava, DL Clements, A Cooray, K Coppin, H Dannerbauer, A Dariush, G De Zotti, L Dunne, S Eales, J Fritz, R Hopwood, E Ibar, RJ Ivison, MJ Jarvis, S Kim, LL Leeuw, S Maddox, MJ Michałowski, M Negrello, E Pascale, M Pohlen, DA Riechers, E Rigby, D Scott, P Temi, PP Van Der Werf, J Wardlow, D Wilner, A Verma

Abstract:

We present high-spatial resolution imaging obtained with the Submillimeter Array (SMA) at 880 μm and the Keck adaptive optics (AO) system at the K S-band of a gravitationally lensed submillimeter galaxy (SMG) at z = 4.243 discovered in the Herschel Astrophysical Terahertz Large Area Survey. The SMA data (angular resolution 06) resolve the dust emission into multiple lensed images, while the Keck AO K S-band data (angular resolution 01) resolve the lens into a pair of galaxies separated by 03. We present an optical spectrum of the foreground lens obtained with the Gemini-South telescope that provides a lens redshift of z lens = 0.595 ± 0.005. We develop and apply a new lens modeling technique in the visibility plane that shows that the SMG is magnified by a factor of μ = 4.1 ± 0.2 and has an intrinsic infrared (IR) luminosity of L IR = (2.1 ± 0.2) × 1013 L ⊙. We measure a half-light radius of the background source of r s = 4.4 ± 0.5kpc which implies an IR luminosity surface density of ΣIR = (3.4 ± 0.9) × 1011 L ⊙kpc-2, a value that is typical of z > 2 SMGs but significantly lower than IR luminous galaxies at z 0. The two lens galaxies are compact (r lens 0.9kpc) early-types with Einstein radii of θE1 = 0.57 ± 0.01 and θE2 = 0.40 ± 0.01 that imply masses of M lens1 = (7.4 ± 0.5) × 1010 M ⊙ and M lens2 = (3.7 ± 0.3) × 10 10 M ⊙. The two lensing galaxies are likely about to undergo a dissipationless merger, and the mass and size of the resultant system should be similar to other early-type galaxies at z 0.6. This work highlights the importance of high spatial resolution imaging in developing models of strongly lensed galaxies discovered by Herschel. © 2012. The American Astronomical Society. All rights reserved.

The Milky Way Project First Data Release: A bubblier Galactic disc

Monthly Notices of the Royal Astronomical Society 424:4 (2012) 2442-2460

Authors:

RJ Simpson, MS Povich, S Kendrew, CJ Lintott, E Bressert, K Arvidsson, C Cyganowski, S Maddison, K Schawinski, R Sherman, AM Smith, G Wolf-Chase

Abstract:

We present a new catalogue of 5106 infrared bubbles created through visual classification via the online citizen science website 'The Milky Way Project'. Bubbles in the new catalogue have been independently measured by at least five individuals, producing consensus parameters for their position, radius, thickness, eccentricity and position angle. Citizen scientists - volunteers recruited online and taking part in this research - have independently rediscovered the locations of at least 86 percent of three widely used catalogues of bubbles and Hii regions whilst finding an order of magnitude more objects. 29 percent of the Milky Way Project catalogue bubbles lie on the rim of a larger bubble, or have smaller bubbles located within them, opening up the possibility of better statistical studies of triggered star formation. Also outlined is the creation of a 'heat map' of star formation activity in the Galactic plane. This online resource provides a crowd-sourced map of bubbles and arcs in the Milky Way, and will enable better statistical analysis of Galactic star formation sites. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.