A new look at local ultraluminous infrared galaxies: the atlas and radiative transfer models of their complex physics

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 512:4 (2022) 5183-5213

Authors:

A Efstathiou, D Farrah, J Afonso, DL Clements, E González-Alfonso, M Lacy, S Oliver, V Papadopoulou Lesta, C Pearson, D Rigopoulou, M Rowan-Robinson, HWW Spoon, A Verma, L Wang

Home-Based Music Therapy to Support Bulbar and Respiratory Functions of Persons with Early and Mid-Stage Amyotrophic Lateral Sclerosis—Protocol and Results from a Feasibility Study

Brain Sciences MDPI AG 12:4 (2022) 494-494

Authors:

Alisa T Apreleva Kolomeytseva, Lev Brylev, Marziye Eshghi, Zhanna Bottaeva, Jufen Zhang, Jörg C Fachner, Alexander J Street

Abstract:

<jats:p>Respiratory failure, malnutrition, aspiration pneumonia, and dehydration are the precursors to mortality in ALS. Loss of natural communication is considered one of the worst aspects of ALS. This first study to test the feasibility of a music therapy protocol for bulbar and respiratory rehabilitation in ALS employs a mixed-methods case study series design with repeated measures. Newly diagnosed patients meeting the inclusion criteria were invited to participate, until the desired sample size (n = 8) was achieved. The protocol was delivered to participants in their homes twice weekly for six weeks. Individualised exercise sets for independent practice were provided. Feasibility data (recruitment, retention, adherence, tolerability, self-motivation and personal impressions) were collected. Bulbar and respiratory changes were objectively measured. Results. A high recruitment rate (100%), a high retention rate (87.5%) and high mean adherence to treatment (95.4%) provide evidence for the feasibility of the study protocol. The treatment was well tolerated. Mean adherence to the suggested independent exercise routine was 53%. The outcome measurements to evaluate the therapy-induced change in bulbar and respiratory functions were defined. Findings suggest that the protocol is safe to use in early- and mid-stage ALS and that music therapy was beneficial for the participants’ bulbar and respiratory functions. Mean trends suggesting that these functions were sustained or improved during the treatment period were observed for most outcome parameters: Maximal Inspiratory Pressure, Maximal Expiratory Pressure, Peak Expiratory Flow, the Center for Neurologic Study—Bulbar Function Scale speech and swallowing subscales, Maximum Phonation Time, Maximum Repetition Rate—Alternating, Maximum Repetition Rate—Sequential, Jitter, Shimmer, NHR, Speaking rate, Speech–pause ratio, Pause frequency, hypernasality level, Time-to-Laryngeal Vestibule Closure, Maximum Pharyngeal Constriction Area, Peak Position of the Hyoid Bone, Total Pharyngeal Residue C24area. Conclusion. The suggested design and protocol are feasible for a larger study, with some modifications, including aerodynamic measure of nasalance, abbreviated voice sampling and psychological screening.</jats:p>

Serendipitous discovery of radio flaring behaviour from a nearby M dwarf with MeerKAT

Monthly Notices of the Royal Astronomical Society Oxford University Press 513:3 (2022) 3482-3492

Authors:

Alex Andersson, Rob Fender, Chris Lintott, David Williams, Laura Driessen, Patrick Woudt, Alexander van der Horst, David Buckley, Sara Motta, Lauren Rhodes, Nora Eisner, Rachel Osten, Paul Vreeswijk, Steven Bloemen, Paul Groot

Abstract:

We report on the detection of MKT J174641.0−321404, a new radio transient found in untargeted searches of wide-field MeerKAT radio images centred on the black hole X-ray binary H1743−322. MKT J174641.0−321404 is highly variable at 1.3 GHz and was detected three times during 11 observations of the field in late 2018, reaching a maximum flux density of 590 ± 60 μJy. We associate this radio transient with a high proper motion, M dwarf star SCR 1746−3214 12 pc away from the Sun. Multiwavelength observations of this M dwarf indicate flaring activity across the electromagnetic spectrum, consistent with emission expected from dMe stars, and providing upper limits on quiescent brightness in both the radio and X-ray regimes. TESS photometry reveals a rotational period for SCR 1746−3214 of 0.2292 ± 0.0025 days, which at its estimated radius makes the star a rapid rotator, comparable to other low mass systems. Dedicated spectroscopic follow up confirms the star as a mid-late spectral M dwarf with clear magnetic activity indicated by strong Hα emission. This transient’s serendipitous discovery by MeerKAT, along with multiwavelength characterisation, make it a prime demonstration of both the capabilities of the current generation of radio interferometers and the value of simultaneous observations by optical facilities such as MeerLICHT. Our results build upon the literature of of M dwarfs’ flaring behaviour, particularly relevant to the habitability of their planetary systems.

Serendipitous discovery of radio flaring behaviour from a nearby M dwarf with MeerKAT

(2022)

Authors:

Alex Andersson, Rob Fender, Chris Lintott, David Williams, Laura Driessen, Patrick Woudt, Alexander van der Horst, David Buckley, Sara Motta, Lauren Rhodes, Nora Eisner, Rachel Osten, Paul Vreeswijk, Steven Bloemen, Paul Groot

The satchel pipeline: a general tool for data classified through citizen science

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 512:3 (2022) 3972-3991

Authors:

EJ Safron, TS Boyajian, N Eisner