The K-band Hubble diagram of submillimetre galaxies and hyperluminous galaxies
Monthly Notices of the Royal Astronomical Society 346:4 (2003)
Abstract:
We present the K-baad Hubble diagrams (K-z relations) of submillimetre-selected galaxies and hyperluminous galaxies (HLIRGs). We report the discovery of a remarkably tight K-z relation of HLIRGs, indistinguishable from that of the most luminous radio galaxies. Like radio galaxies, the HLIRG K-z relation at z ∼ 3 is consistent with a passively evolving ∼3L* instantaneous starburst starting from a redshift of z ∼ 10. In contrast, many submillimetre-selected galaxies are ≳2 mag fainter, and the population has a much larger dispersion. We argue that dust obscuration and/or a larger mass range may be responsible for this scatter. The galaxies so far proved to be hyperluminous may have been biased towards higher AGN bolometric contributions than submillimetre-selected galaxies due to the 60-μm selection of some, so the location on the K-z relation may be related to the presence of the most massive active galactic nucleus. Alternatively, a particular host galaxy mass range may be responsible for both extreme star formation and the most massive active nuclei.A mid-infrared spectroscopic survey of starburst galaxies: Excitation and abundances
Astronomy & Astrophysics EDP Sciences 403:3 (2003) 829-846
A mir spectroscopic survey of starburst galaxies
European Space Agency, (Special Publication) ESA SP (2003) 263-266
Abstract:
We present a mid-infrared (MIR) spectroscopic survey of starburst galaxies as an example of analysis of scientifically focused samples selected from the ISO Data Archive (IDA). We use fine structure lines (FSL) ratios of Ne, Ar and S to construct diagnostic excitation diagrams and, in combination with hydrogen recombination lines (HRL), we determine their elemental abundances. For Ne and Ar, we find that excitation indicators are positively correlated with each other and negatively with abundance. On comparison with a complementary sample of galactic H II regions we find that starbursts are generally of lower excitation. Starbursts exhibiting Wolf-Rayet (WR) features are separated both in excitation and abundance from the remaining starbursts. Most surprisingly, S is found to be underabundant by a factor of ∼ 3 in our low excitation starbursts with respect to the Ne and Ar, contrary to expectations from nucleosynthesis theory. Our results are combined with those of a related sub-sample of Seyfert galaxies (Sturm et al. 2002) to derive diagnostic diagrams discriminating the two types of activity on the basis of excitation traced by MIR lines. The data presented will be useful as a reference for observations of fainter and/or higher redshift sources with future IR observatories such as SIRTF, SOFIA and Herschel.ISO photometry of hyperluminous infrared galaxies: Implications for the origin of their extreme luminosities
European Space Agency, (Special Publication) ESA SP (2003) 301-304
Abstract:
We present 7-180μm photometry of a sample of hyperluminous infrared galaxies (HyLIGs) obtained with the photometer and camera mounted on the Infrared Space Observatory (ISO). We have used state-of-the-art' radiative transfer models of obscured starbursts and dusty tori to model their broadband spectral energy distributions (SEDs). We find that IRAS F00235+1024, IRAS F14218+3845 and IRAS F15307+3252 require a combination of starburst and AGN components to explain their mid to far-infrared emission, while for TXS0052+471 a dust torus model alone is sufficient. For IRAS F00235+1024 and IRAS F14218+3845 the starburst component is the predominant contributor whereas for IRAS F15307+3252 the dust torus component dominates. The implied star formation rates (SFR) estimated from the starburst infrared luminosities are dM*,all/dt > 1000M⊙yr-1h50-2 and are amongst the highest SFRs estimated to date. We also demonstrate that the well-known radio-FIR correlation observed for extragalactic sources extends into both higher radio and infrared power than previously investigated. The relation for HyLIGs has a mean q value of 1.94. The results of this study imply that better sampling of the IR SEDs of HyLIGs may reveal that both AGN and starburst components are required to explain their emission from the NIR to the sub-millimetre.Submillimetre observations of hyperluminous infrared galaxies
Monthly Notices of the Royal Astronomical Society 335:4 (2002) 1163-1175