Obscured activity: AGN, quasars, starbursts and ULIGs observed by the infrared space observatory
Space Science Reviews 119:1-4 (2005) 355-407
Abstract:
Some of the most 'active' galaxies in the Universe are obscured by large quantities of dust and emit a substantial fraction of their bolometric luminosity in the infrared. Observations of these infrared luminous galaxies with the Infrared Space Observatory (ISO) have provided a relatively unabsorbed view to the sources fuelling this active emission. The improved sensitivity, spatial resolution and spectroscopic capability of ISO over its predecessor Infrared Astronomical Satellite (IRAS) of enabled significant advances in the understanding of the infrared properties of active galaxies. ISO surveyed a wide range of active galaxies which, in the context of this review, includes those powered by intense bursts of star formation as well as those containing a dominant active galactic nucleus (AGN). Mid-infrared imaging resolved for the first time the dust enshrouded nuclei in many nearby galaxies, while a new era in infrared spectroscopy was opened by probing a wealth of atomic, ionic and molecular lines as well as broad band features in the mid- and far-infrared. This was particularly useful, since it resulted in the understanding of the power production, excitation and fuelling mechanisms in the nuclei of active galaxies including the intriguing but so far elusive ultraluminous infrared galaxies. Detailed studies of various classes of AGN and quasars greatly improved our understanding of the unification scenario. Far-infrared imaging and photometry revealed the presence of a new very cold dust component in galaxies and furthered our knowledge of the far-infrared properties of faint starbursts, ULIGs and quasars. We summarise almost nine years of key results based on ISO data spanning the full range of luminosity and type of active galaxies. © Springer 2005.Hot Cores : Probes of High-Redshift Galaxies
ArXiv astro-ph/0504040 (2005)
Abstract:
The very high rates of second generation star formation detected and inferred in high redshift objects should be accompanied by intense millimetre-wave emission from hot core molecules. We calculate the molecular abundances likely to arise in hot cores associated with massive star formation at high redshift, using several independent models of metallicity in the early Universe. If the number of hot cores exceeds that in the Milky Way Galaxy by a factor of at least one thousand, then a wide range of molecules in high redshift hot cores should have detectable emission. It should be possible to distinguish between independent models for the production of metals and hence hot core molecules should be useful probes of star formation at high redshift.Molecular abundance ratios as a tracer of accelerated collapse in regions of high-mass star formation
Astrophysical Journal 620:2 I (2005) 795-799
Abstract:
Recent observations suggest that the behavior of tracer species such as N2H+ and CS is significantly different in regions of high- and low-mass star formation. In the latter, N2H+ is a good tracer of mass, while CS is not. Observations show the reverse to be true in high-mass star formation regions. We use a computational chemical model to show that the abundances of these and other species may be significantly altered by a period of accelerated collapse in high-mass star-forming regions. We suggest that these results provide a potential explanation of the observations, and make predictions for the behavior of other species. © 2005. The American Astronomical Society. All rights reserved.The European Large Area ISO Survey - VIII. 90-μm final analysis and source counts
Monthly Notices of the Royal Astronomical Society 354:3 (2004) 924-934
Abstract:
We present a re-analysis of the European Large Area Infrared Space Observatory (ISO) Survey (ELAIS) 90-μm observations carried out with ISOPHOT, an instrument on board the ISO of the European Space Agency. With more than 12 deg2, the ELAIS survey is the largest area covered by ISO in a single programme and is about one order of magnitude deeper than the IRAS 100-μm survey. The data analysis is presented and was mainly performed with the PHOT interactive analysis software but using the pairwise method of Stickel et al. for signal processing from edited raw data to signal per chopper plateau. The ELAIS 90-μm catalogue contains 237 reliable sources with fluxes larger than 70 mJy and is available in the electronic version of this article. Number counts are presented and show an excess above the no-evolution model prediction. This confirms the strong evolution detected at shorter (15 μm) and longer (170 μm) wavelengths in other ISO surveys. The ELAIS counts are in agreement with previous works at 90 μm and in particular with the deeper counts extracted from the Lockman hole observations. Comparison with recent evolutionary models show that the models of Franceschini et al. and Guiderdoni et al. (which includes a heavily extinguished population of galaxies) give the best fit to the data. Deeper observations are nevertheless required to discriminate better between the model predictions in the far-infrared, and are scheduled with the Spitzer Space Telescope, which has already started operating, and will also be performed by ASTRO-F.Molecular abundance ratios as a tracer of accelerated collapse in regions of high mass star formation?
ArXiv astro-ph/0410653 (2004)