Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Stellar_flare_hits_HD_189733_b_(artist's_impression)

This artist's impression shows the hot Jupiter HD 189733b, as it passes in front of its parent star, as the latter is flaring, driving material away from the planet. The escaping atmosphere is seen silhouetted against the starlight. The surface of the star, which is around 80% the mass of the Sun, is based on observations of the Sun from NASA's Solar Dynamics Observatory.

Credit: NASA, ESA, L. Calçada, Solar Dynamics Observatory

Prof Suzanne Aigrain

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Exoplanets and planetary physics

Sub department

  • Astrophysics

Research groups

  • Exoplanets and Stellar Physics
Suzanne.Aigrain@physics.ox.ac.uk
Telephone: 01865 (2)73339
Denys Wilkinson Building, room 762
Stars & Planets @ Oxford research group website
  • About
  • Publications

Applications of a Gaussian process framework for modelling of high-resolution exoplanet spectra

Monthly Notices of the Royal Astronomical Society Oxford University Press 512:2 (2022) 2604-2617

Authors:

Annabella Meech, Suzanne Aigrain, Matteo Brogi, Jayne L Birkby

Abstract:

Observations of exoplanet atmospheres in high resolution have the potential to resolve individual planetary absorption lines, despite the issues associated with ground-based observations. The removal of contaminating stellar and telluric absorption features is one of the most sensitive steps required to reveal the planetary spectrum and, while many different detrending methods exist, it remains difficult to directly compare the performance and efficacy of these methods. Additionally, though the standard cross-correlation method enables robust detection of specific atmospheric species, it only probes for features that are expected a priori. Here, we present a novel methodology using Gaussian process (GP) regression to directly model the components of high-resolution spectra, which partially addresses these issues. We use two archival CRyogenic Infra-Red Echelle Spectrograph (CRIRES)/Very Large Telescope (VLT) data sets as test cases, observations of the hot Jupiters HD 189733 b and 51 Pegasi b, recovering injected signals with average line contrast ratios of ∼4.37 × 10-3 and ∼1.39 × 10-3, and planet radial velocities ΔKp = 1.45 ± 1.53 km s-1 and ΔKp = 0.12 ± 0.12 km s-1 from the injection velocities, respectively. In addition, we demonstrate an application of the GP method to assess the impact of the detrending process on the planetary spectrum, by implementing injection-recovery tests. We show that standard detrending methods used in the literature negatively affect the amplitudes of absorption features in particular, which has the potential to render retrieval analyses inaccurate. Finally, we discuss possible limiting factors for the non-detections using this method, likely to be remedied by higher signal-to-noise data.
More details from the publisher
Details from ORA
More details
More details

One year of AU Mic with HARPS: I-measuring the masses of the two transiting planets

Monthly Notices of the Royal Astronomical Society Oxford University Press 512:2 (2022) 3060-3078

Authors:

Norbert Zicher, Oscar Barragan Villanueva, Baptiste Klein, Suzanne Aigrain, James E Owen, Davide Gandolfi, Anne-Marie Lagrange, Luisa Maria Serrano, Laurel Kaye, Louise Dyregaard Nielsen, Vinesh Maguire Rajpaul, Antoine Grandjean, Elisa Goffo, Belinda Nicholson

Abstract:

The system of two transiting Neptune-sized planets around the bright, young M-dwarf AU Mic provides a unique opportunity to test models of planet formation, early evolution, and star-planet interaction. However, the intense magnetic activity of the host star makes measuring the masses of the planets via the radial velocity (RV) method very challenging. We report on a 1-yr, intensive monitoring campaign of the system using 91 observations with the HARPS spectrograph, allowing for detailed modelling of the ∼600 m s-1 peak-to-peak activity-induced RV variations. We used a multidimensional Gaussian Process framework to model these and the planetary signals simultaneously. We detect the latter with semiamplitudes of Kb = 5.8 ± 2.5 m s-1 and Kc = 8.5 ± 2.5 m s-1, respectively. The resulting mass estimates, Mb = 11.7 ± 5.0 M⊕ and Mc = 22.2 ± 6.7 M⊕, suggest that planet b might be less dense, and planet c considerably denser than previously thought. These results are in tension with the current standard models of core-accretion. They suggest that both planets accreted a H/He envelope that is smaller than expected, and the trend between the two planets' envelope fractions is the opposite of what is predicted by theory.
More details from the publisher
Details from ORA
More details
More details

One year of AU Mic with HARPS: I -- measuring the masses of the two transiting planets

(2022)

Authors:

Norbert Zicher, Oscar Barragán, Baptiste Klein, Suzanne Aigrain, James E Owen, Davide Gandolfi, Anne-Marie Lagrange, Luisa Maria Serrano, Laurel Kaye, Louise Dyregaard Nielsen, Vinesh Maguire Rajpaul, Antoine Grandjean, Elisa Goffo, Belinda Nicholson
More details from the publisher
Details from ArXiV

Planet hunters TESS IV: a massive, compact hierarchical triple star system TIC 470710327

Monthly Notices of the Royal Astronomical Society Oxford University Press 511:4 (2022) 4710-4723

Authors:

Nl Eisner, C Johnston, S Toonen, Aj Frost, S Janssens, Cj Lintott, S Aigrain, H Sana, M Abdul-Masih, Kz Arellano-Córdova, Pg Beck, E Bordier, E Cannon, A Escorza, M Fabry, L Hermansson, Sb Howell, G Miller, S Sheyte, S Alhassan, Eml Baeten, F Barnet, Sj Bean, M Bernau, Dm Bundy, Mz Di Fraia, Fm Emralino, Bl Goodwin, P Hermes, T Hoffman, M Huten, R Janíček, S Lee, Mt Mazzucato, Dj Rogers, Mp Rout, J Sejpka, C Tanner, Ia Terentev, D Urvoy

Abstract:

We report the discovery and analysis of a massive, compact, hierarchical triple system (TIC 470710327) initially identified by citizen scientists in data obtained by NASA’s Transiting Exoplanet Survey Satellite (TESS). Spectroscopic follow-up observations obtained with the HERMES spectrograph, combined with eclipse-timing variations (ETVs), confirm that the system is comprised of three OB stars, with a compact 1.10 d eclipsing binary and a non-eclipsing tertiary on a 52.04 d orbit. Dynamical modelling of the system (from radial velocity and ETVs) reveal a rare configuration wherein the tertiary star (O9.5-B0.5V; 14–17 M⊙) is more massive than the combined mass of the inner binary (10.9–13.2 M⊙). Given the high mass of the tertiary, we predict that this system will undergo multiple phases of mass transfer in the future, and likely end up as a double neutron star gravitational wave progenitor or an exotic Thorne–Żytkow object. Further observational characterization of this system promises constraints on both formation scenarios of massive stars as well as their exotic evolutionary end-products.
More details from the publisher
Details from ORA
More details
More details

Planet Hunters TESS IV: A massive, compact hierarchical triple star system TIC 470710327

(2022)

Authors:

Nora L Eisner, Cole Johnston, Silvia Toonen, Abigail J Frost, Soetkin Janssens, Chris J Lintott, Suzanne Aigrain, Hugues Sana, Michael Abdul-Masih, Karla Z Arellano-Córdova, Paul G Beck, Emma Bordier, Emily Canon, Ana Escorza, Mattias Fabry, Lars Hermansson, Steve Howell, Grant Miller, Shreeya Sheyte, Safaa Alhassan, Elisabeth ML Baeten, Frank Barnet, Stewart J Bean, Mikael Bernau, David M Bundy, Marco Z Di Fraia, Francis M Emralino, Brian L Goodwin, Pete Hermes, Tony Hoffman, Marc Huten, Roman Janíček, Sam Lee, Michele T Mazzucato, David J Rogers, Michael P Rout, Johann Sejpka, Christopher Tanner, Ivan A Terentev, David Urvoy
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • Current page 11
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet