Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Professor Myles Allen CBE FRS

Statutory Professor

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics
Myles.Allen@physics.ox.ac.uk
Telephone: 01865 (2)72085,01865 (2)75895
Atmospheric Physics Clarendon Laboratory, room 109
  • About
  • Publications

Implications of possible interpretations of greenhouse gas balance in the Paris Agreement

Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences The Royal Society 376:2119 (2018) 20160445

Authors:

J Fuglestvedt, J Rogelj, RJ Millar, M Allen, O Boucher, M Cain, PM Forster, E Kriegler, D Shindell
More details from the publisher
More details
More details

The myriad challenges of the Paris Agreement

Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences The Royal Society 376:2119 (2018) 20180066

Authors:

Dann Mitchell, Myles R Allen, Jim W Hall, Benito Muller, Lavanya Rajamani, Corinne Le Qur
More details from the publisher
More details
More details

Uncertain impacts on economic growth when stabilizing global temperatures at 1.5°C or 2°C warming

Philosophical transactions. Series A, Mathematical, physical, and engineering sciences Royal Society 376:2119 (2018) 20160460

Authors:

Felix Pretis, M Schwarz, Kevin Tang, Karsten Haustein, Myles R Allen

Abstract:

Empirical evidence suggests that variations in climate affect economic growth across countries over time. However, little is known about the relative impacts of climate change on economic outcomes when global mean surface temperature (GMST) is stabilized at 1.5°C or 2°C warming relative to pre-industrial levels. Here we use a new set of climate simulations under 1.5°C and 2°C warming from the 'Half a degree Additional warming, Prognosis and Projected Impacts' (HAPPI) project to assess changes in economic growth using empirical estimates of climate impacts in a global panel dataset. Panel estimation results that are robust to outliers and breaks suggest that within-year variability of monthly temperatures and precipitation has little effect on economic growth beyond global nonlinear temperature effects. While expected temperature changes under a GMST increase of 1.5°C lead to proportionally higher warming in the Northern Hemisphere, the projected impact on economic growth is larger in the Tropics and Southern Hemisphere. Accounting for econometric estimation and climate uncertainty, the projected impacts on economic growth of 1.5°C warming are close to indistinguishable from current climate conditions, while 2°C warming suggests statistically lower economic growth for a large set of countries (median projected annual growth up to 2% lower). Level projections of gross domestic product (GDP) per capita exhibit high uncertainties, with median projected global average GDP per capita approximately 5% lower at the end of the century under 2°C warming relative to 1.5°C. The correlation between climate-induced reductions in per capita GDP growth and national income levels is significant at the p < 0.001 level, with lower-income countries experiencing greater losses, which may increase economic inequality between countries and is relevant to discussions of loss and damage under the United Nations Framework Convention on Climate Change.This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.
More details from the publisher
Details from ORA
More details
More details

Reply to ‘Interpretations of the Paris climate target’

Nature Geoscience Springer Nature 11:4 (2018) 222-222

Authors:

Richard J Millar, Jan S Fuglestvedt, Pierre Friedlingstein, Joeri Rogelj, Michael J Grubb, H Damon Matthews, Ragnhild B Skeie, Piers M Forster, David J Frame, Myles R Allen
More details from the publisher
More details

Policy instruments for limiting global temperature rise to 1.5°C – can humanity rise to the challenge?

Climate Policy Taylor & Francis 18:3 (2018) 275-286

Authors:

Axel Michaelowa, Myles Allen, Fu Sha
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • Current page 19
  • Page 20
  • Page 21
  • Page 22
  • Page 23
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet