Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Professor Myles Allen CBE FRS

Statutory Professor

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics
Myles.Allen@physics.ox.ac.uk
Telephone: 01865 (2)72085,01865 (2)75895
Atmospheric Physics Clarendon Laboratory, room 109
  • About
  • Publications

Finding Ocean States That Are Consistent with Observations from a Perturbed Physics Parameter Ensemble

Journal of Climate American Meteorological Society (2018)

Authors:

S Sparrow, RJ Millar, K Yamazaki, N Massey, Adam Povey, A Bowery, RG Grainger, D Wallom, M Allen

Abstract:

A very large ensemble is used to identify subgrid-scale parameter settings for the HadCM3 model that are capable of best simulating the ocean state over the recent past (1980–2010). A simple particle filtering technique based upon the agreement of basin mean sea surface temperature (SST) and upper 700-m ocean heat content with EN3 observations is applied to an existing perturbed physics ensemble with initial conditions perturbations. A single set of subgrid-scale parameter values was identified from the wide range of initial parameter sets that gave the best agreement with ocean observations for the period studied. The parameter set, different from the standard model parameters, has a transient climate response of 1.68 K. The selected parameter set shows an improved agreement with EN3 decadal-mean SST patterns and the Atlantic meridional overturning circulation (AMOC) at 26°N as measured by the Rapid Climate Change (RAPID) array. Particle filtering techniques as demonstrated here could have a useful role in improving the starting point for traditional model-tuning exercises in coupled climate models.
More details from the publisher
Details from ORA
More details

A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation

npj Climate and Atmospheric Science Springer Nature 1 (2018) 16

Authors:

Myles Allen, Keith Shine, Jan Fuglestvedt, Richard Millar, Michelle Cain, David Frame, Adrian Macey

Abstract:

While cumulative carbon dioxide (CO2) emissions dominate anthropogenic warming over centuries, temperatures over the coming decades are also strongly affected by short-lived climate pollutants (SLCPs), complicating the estimation of cumulative emission budgets for ambitious mitigation goals. Using conventional Global Warming Potentials (GWPs) to convert SLCPs to “CO2-equivalent” emissions misrepresents their impact on global temperature. Here we show that peak warming under a range of mitigation scenarios is determined by a linear combination of cumulative CO2 emissions to the time of peak warming and non-CO2 radiative forcing immediately prior to that time. This may be understood by expressing aggregate non-CO2 forcing as cumulative CO2 forcing-equivalent (CO2-fe) emissions. We show further that contributions to CO2-fe emissions are well approximated by a new usage of GWP, denoted GWP*, which relates cumulative CO2 emissions to date with the current rate of emission of SLCPs. GWP* accurately indicates the impact of emissions of both long-lived and short-lived pollutants on radiative forcing and temperatures over a wide range of timescales, including under ambitious mitigation when conventional GWPs fail. Measured by GWP*, implementing the Paris Agreement would reduce the expected rate of warming in 2030 by 28% relative to a No Policy scenario. Expressing mitigation efforts in terms of their impact on future cumulative emissions aggregated using GWP* would relate them directly to contributions to future warming, better informing both burden-sharing discussions and long-term policies and measures in pursuit of ambitious global temperature goals.
More details from the publisher
Details from ORA
More details

Higher CO2 concentrations increase extreme event risk in a 1.5C world

Nature Climate Change Nature Publishing Group 8 (2018) 604-608

Authors:

Hugh S Baker, Richard J Millar, Allen, DJ Karoly, U Beyerle, Benoit P Guillod, D Mitchell, H Shiogama, Sarah N Sparrow, Tim Woollings, Myles R Allen

Abstract:

The Paris Agreement1 aims to ‘pursue efforts to limit the temperature increase to 1.5°C above pre-industrial levels.’ However, it has been suggested that temperature targets alone are unable to limit the risks associated with anthropogenic emissions2, 3. Here, using an ensemble of model simulations, we show that atmospheric CO2 increase - a more predictable consequence of emissions compared to global temperature increase - has a significant impact on Northern Hemisphere summer temperature, heat stress, and tropical precipitation extremes. Hence in an iterative climate mitigation regime aiming solely for a specific temperature goal, an unexpectedly low climate response may have corresponding ‘dangerous’ changes in extreme events. The direct impact of higher CO2 concentrations on climate extremes therefore substantially reduces the upper bound of the carbon budget, and highlights the need to explicitly limit atmospheric CO2 concentration when formulating allowable emissions. Thus, complementing global mean temperature goals with explicit limits on atmospheric CO2 concentrations in future climate policy would reduce the adverse effects of high-impact weather extremes.
More details from the publisher
Details from ORA
More details

Author Correction: Emission budgets and pathways consistent with limiting warming to 1.5 °C

Nature Geoscience Springer Nature 11:6 (2018) 454-455

Authors:

Richard J Millar, Jan S Fuglestvedt, Pierre Friedlingstein, Joeri Rogelj, Michael J Grubb, H Damon Matthews, Ragnhild B Skeie, Piers M Forster, David J Frame, Myles R Allen
More details from the publisher

The many possible climates from the Paris Agreement’s aim of 1.5 °C warming

Nature Springer Nature 558:7708 (2018) 41-49

Authors:

Sonia I Seneviratne, Joeri Rogelj, Roland Séférian, Richard Wartenburger, Myles R Allen, Michelle Cain, Richard J Millar, Kristie L Ebi, Neville Ellis, Ove Hoegh-Guldberg, Antony J Payne, Carl-Friedrich Schleussner, Petra Tschakert, Rachel F Warren
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 14
  • Page 15
  • Page 16
  • Page 17
  • Current page 18
  • Page 19
  • Page 20
  • Page 21
  • Page 22
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet