Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. David Alonso

Associate Professor of Cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Rubin-LSST
David.Alonso@physics.ox.ac.uk
Telephone: 01865 (2)288582
Denys Wilkinson Building, room 532B
  • About
  • Publications

Calibrating baryonic effects in cosmic shear with external data in the LSST era

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 543:2 (2025) 1518-1534

Authors:

Amy Wayland, David Alonso, Matteo Zennaro

Abstract:

<jats:title>ABSTRACT</jats:title> <jats:p>Cosmological constraints derived from weak lensing (WL) surveys are limited by baryonic effects, which suppress the non-linear matter power spectrum on small scales. By combining WL measurements with data from external tracers of the gas around massive structures, it is possible to calibrate baryonic effects and, therefore, obtain more precise cosmological constraints. In this study, we generate mock data for a Stage-IV weak lensing survey such as the Legacy Survey of Space and Time (LSST), X-ray gas fractions, and stacked kinetic Sunyaev–Zel’dovich (kSZ) measurements, to jointly constrain cosmological and astrophysical parameters describing baryonic effects (using the Baryon Correction Model–BCM). First, using WL data alone, we quantify the level to which the BCM parameters will need to be constrained to recover the cosmological constraints obtained under the assumption of perfect knowledge of baryonic feedback. We identify the most relevant baryonic parameters and determine that they must be calibrated to a precision of $\sim 10$–20 per cent to avoid significant degradation of the fiducial WL constraints. We forecast that long-term X-ray data from $\mathcal {O}(5000)$ clusters should be able to reach this threshold for the parameters that characterize the abundance of hot virialized gas. Constraining the distribution of ejected gas presents a greater challenge, however, but we forecast that long-term kSZ data from a cosmic microwave background-S4-like experiment should achieve the level of precision required for full self-calibration.</jats:p>
More details from the publisher

Insights on gas thermodynamics from the combination of x-ray and thermal Sunyaev-Zel’dovich data cross correlated with cosmic shear

Physical Review D American Physical Society (APS) 112:4 (2025) 043525

Authors:

Adrien La Posta, David Alonso, Nora Elisa Chisari, Tassia Ferreira, Carlos García-García

Abstract:

We measure the cross-correlation between cosmic shear from the third-year release of the Dark Energy Survey, thermal Sunyaev-Zel’dovich (tSZ) maps from , and x-ray maps from ROSAT. We investigate the possibility of developing a physical model able to jointly describe both measurements, simultaneously constraining the spatial distribution and thermodynamic properties of hot gas. We find that a relatively simple model is able to describe both sets of measurements and to make reasonably accurate predictions for other observables (the tSZ autocorrelation, its cross-correlation with x-rays, and tomographic measurements of the bias-weighted mean gas pressure). We show, however, that contamination from x-ray active galactic nuclei (AGN), as well as the impact of nonthermal pressure support, must be incorporated in order to fully resolve tensions in parameter space between different data combinations. Combining the tSZ and x-ray cross-correlations with cosmic shear we obtain simultaneous constraints on the mass scale at which half of the gas content has been expelled from the halo, log 10 M c = 14.8 3 − 0.23 + 0.16 , on the polytropic index of the gas, Γ = 1.14 4 − 0.013 + 0.016 , and on the ratio of the central gas temperature to the virial temperature α T = 1.3 0 − 0.28 + 0.15 , marginalizing over AGN contributions to the signal.
More details from the publisher
More details

The impact of galaxy bias on cross-correlation tomography

(2025)

Authors:

Sara Maleubre, Matteo Zennaro, David Alonso, Ian McCarthy, Matthieu Schaller, Joop Schaye
More details from the publisher

The Simons Observatory: science goals and forecasts for the enhanced Large Aperture Telescope

Journal of Cosmology and Astroparticle Physics IOP Publishing 2025:08 (2025) 034

Authors:

M Abitbol, I Abril-Cabezas, S Adachi, P Ade, AE Adler, P Agrawal, J Aguirre, Z Ahmed, S Aiola, T Alford, A Ali, David Alonso, MA Alvarez, R An, K Arnold, P Ashton, Z Atkins, J Austermann, Susanna Azzoni, C Baccigalupi, A Baleato Lizancos, D Barron, P Barry, J Bartlett, Michael Jones, Adrien La Posta, Jamie Leech, Angela C Taylor

Abstract:

We describe updated scientific goals for the wide-field, millimeter-wave survey that will be produced by the Simons Observatory (SO). Significant upgrades to the 6-meter SO Large Aperture Telescope (LAT) are expected to be complete by 2028, and will include a doubled mapping speed with 30,000 new detectors and an automated data reduction pipeline. In addition, a new photovoltaic array will supply most of the observatory's power. The LAT survey will cover about 60% of the sky at a regular observing cadence, with five times the angular resolution and ten times the map depth of the Planck satellite. The science goals are to: (1) determine the physical conditions in the early universe and constrain the existence of new light particles; (2) measure the integrated distribution of mass, electron pressure, and electron momentum in the late-time universe, and, in combination with optical surveys, determine the neutrino mass and the effects of dark energy via tomographic measurements of the growth of structure at redshifts z ≲ 3; (3) measure the distribution of electron density and pressure around galaxy groups and clusters, and calibrate the effects of energy input from galaxy formation on the surrounding environment; (4) produce a sample of more than 30,000 galaxy clusters, and more than 100,000 extragalactic millimeter sources, including regularly sampled AGN light-curves, to study these sources and their emission physics; (5) measure the polarized emission from magnetically aligned dust grains in our Galaxy, to study the properties of dust and the role of magnetic fields in star formation; (6) constrain asteroid regoliths, search for Trans-Neptunian Objects, and either detect or eliminate large portions of the phase space in the search for Planet 9; and (7) provide a powerful new window into the transient universe on time scales of minutes to years, concurrent with observations from the Vera C. Rubin Observatory of overlapping sky.
More details from the publisher
Details from ORA
More details

The Simons Observatory: Assessing the Impact of Dust Complexity on the Recovery of Primordial $B$-modes

(2025)

Authors:

Yiqi Liu, Susanna Azzoni, Susan E Clark, Brandon S Hensley, Là O Vacher, David Alonso, Carlo Baccigalupi, Michael L Brown, Alessandro Carones, Jens Chluba, Jo Dunkley, Carlos Hervías-Caimapo, Bradley R Johnson, Nicoletta Krachmalnicoff, Giuseppe Puglisi, Mathieu Remazeilles, Kevin Wolz

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet