Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. David Alonso

Associate Professor of Cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Rubin-LSST
David.Alonso@physics.ox.ac.uk
Telephone: 01865 (2)288582
Denys Wilkinson Building, room 532B
  • About
  • Publications

Assessment of Gradient-Based Samplers in Standard Cosmological Likelihoods

(2024)

Authors:

Arrykrishna Mootoovaloo, Jaime Ruiz-Zapatero, Carlos García-García, David Alonso
More details from the publisher
Details from ArXiV

Growth history and quasar bias evolution at z < 3 from Quaia

Journal of Cosmology and Astroparticle Physics IOP Publishing 2024:06 (2024) 012

Authors:

Giulia Piccirilli, Giulio Fabbian, David Alonso, Kate Storey-Fisher, Julien Carron, Antony Lewis, Carlos García-García

Abstract:

We make use of the Gaia-unWISE quasar catalogue, Quaia, to constrain the growth history out to high redshifts from the clustering of quasars and their cross-correlation with maps of the Cosmic Microwave Background (CMB) lensing convergence. Considering three tomographic bins, centred at redshifts z̅i = [0.69, 1.59, 2.72], we reconstruct the evolution of the amplitude of matter fluctuations σ 8(z) over the last ∼ 12 billion years of cosmic history. In particular, we make one of the highest-redshift measurements of σ 8 (σ 8(z = 2.72) = 0.22 ± 0.06), finding it to be in good agreement (at the ∼ 1σ level) with the value predicted by ΛCDM using CMB data from Planck. We also used the data to study the evolution of the linear quasar bias for this sample, finding values similar to those of other quasar samples, although with a less steep evolution at high redshifts. Finally, we study the potential impact of foreground contamination in the CMB lensing maps and, although we find evidence of contamination in cross-correlations at z ∼ 1.7 we are not able to clearly pinpoint its origin as being Galactic or extragalactic. Nevertheless, we determine that the impact of this contamination on our results is negligible.
More details from the publisher
Details from ORA
More details

Cosmology from LOFAR Two-metre Sky Survey Data Release 2: Cross-correlation with the cosmic microwave background (Corrigendum)

Astronomy & Astrophysics EDP Sciences 686 (2024) ARTN C2

Authors:

Sj Nakoneczny, D Alonso, M Bilicki, Dj Schwarz, Cl Hale, A Pollo, C Heneka, P Tiwari, J Zheng, M Brüggen, Mj Jarvis, Tw Shimwell
More details from the publisher
More details

The Simons Observatory: Pipeline comparison and validation for large-scale B-modes

Astronomy & Astrophysics EDP Sciences 686 (2024) a16-a16

Authors:

Kevin Wolz, Susanna Azzoni, Carlos Hervías-Caimapo, Josquin Errard, Nicoletta Krachmalnicoff, David Alonso, Carlo Baccigalupi, Antón Baleato Lizancos, Michael L Brown, Erminia Calabrese, Jens Chluba, Jo Dunkley, Giulio Fabbian, Nicholas Galitzki, Baptiste Jost, Magdy Morshed, Federico Nati

Abstract:

Context. The upcoming Simons Observatory Small Aperture Telescopes aim at achieving a constraint on the primordial tensor-to-scalar ratio r at the level of σ (r = 0)≤0.003, observing the polarized CMB in the presence of partial sky coverage, cosmic variance, inhomogeneous non-white noise, and Galactic foregrounds. Aims. We present three different analysis pipelines able to constrain r given the latest available instrument performance, and compare their predictions on a set of sky simulations that allow us to explore a number of Galactic foreground models and elements of instrumental noise, relevant for the Simons Observatory. Methods. The three pipelines employ different combinations of parametric and non-parametric component separation at the map and power spectrum levels, and use B-mode purification to estimate the CMB B-mode power spectrum. We applied them to a common set of simulated realistic frequency maps, and compared and validated them with focus on their ability to extract robust constraints on the tensor-to-scalar ratio r. We evaluated their performance in terms of bias and statistical uncertainty on this parameter. Results. In most of the scenarios the three methodologies achieve similar performance. Nevertheless, several simulations with complex foreground signals lead to a > 2σ bias on r if analyzed with the default versions of these pipelines, highlighting the need for more sophisticated pipeline components that marginalize over foreground residuals. We show two such extensions, using power-spectrum-based and map-based methods, that are able to fully reduce the bias on r below the statistical uncertainties in all foreground models explored, at a moderate cost in terms of σ (r).
More details from the publisher

Constraints on dark matter and astrophysics from tomographic γ-ray cross-correlations

Physical Review D: Particles, Fields, Gravitation and Cosmology American Physical Society 109 (2024) 103517

Authors:

Anya Paopiamsap, David Alonso, Deaglan Bartlett, Maciej Bilicki

Abstract:

We study the cross-correlation between maps of the unresolved 𝛾-ray background constructed from the 12-year data release of the Fermi Large-Area Telescope, and the overdensity of galaxies in the redshift range 𝑧≲0.4 as measured by the 2MASS photometric redshift survey and the WISE-SuperCOSMOS photometric survey. A signal is detected at the 8−10⁢𝜎 level, which we interpret in terms of both astrophysical 𝛾-ray sources, and weakly interacting massive particles (WIMP) dark matter decay and annihilation. The sensitivity achieved allows us to characterise the energy and redshift dependence of the signal, and we show that the latter is incompatible with a pure dark matter origin. We thus use our measurement to place an upper bound on the WIMP decay rate and the annihilation cross section, finding constraints that are competitive with those found in other analyses. Our analysis is based on the extraction of clean model-independent observables that can then be used to constrain arbitrary astrophysical and particle physics models. In this sense we produce measurements of the 𝛾-ray emissivity as a function of redshift and rest-frame energy 𝜖, and of a quantity 𝐹⁡(𝜖) encapsulating all WIMP parameters relevant for dark matter decay or annihilation. We make these measurements, together with a full account of their statistical uncertainties, publicly available.

More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Current page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet