Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. David Alonso

Associate Professor of Cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Rubin-LSST
David.Alonso@physics.ox.ac.uk
Telephone: 01865 (2)288582
Denys Wilkinson Building, room 532B
  • About
  • Publications

The Simons Observatory: Beam characterization for the Small Aperture Telescopes

(2023)

Authors:

Nadia Dachlythra, Adriaan J Duivenvoorden, Jon E Gudmundsson, Matthew Hasselfield, Gabriele Coppi, Alexandre E Adler, David Alonso, Susanna Azzoni, Grace E Chesmore, Giulio Fabbian, Ken Ganga, Remington G Gerras, Andrew H Jaffe, Bradley R Johnson, Brian Keating, Reijo Keskitalo, Theodore S Kisner, Nicoletta Krachmalnicoff, Marius Lungu, Frederick Matsuda, Sigurd Naess, Lyman Page, Roberto Puddu, Giuseppe Puglisi, Sara M Simon, Grant Teply, Tran Tsan, Edward J Wollack, Kevin Wolz, Zhilei Xu
More details from the publisher

Science with the Einstein Telescope: a comparison of different designs

(2023)

Authors:

Marica Branchesi, Michele Maggiore, David Alonso, Charles Badger, Biswajit Banerjee, Freija Beirnaert, Enis Belgacem, Swetha Bhagwat, Guillaume Boileau, Ssohrab Borhanian, Daniel David Brown, Man Leong Chan, Giulia Cusin, Stefan L Danilishin, Jerome Degallaix, Valerio De Luca, Arnab Dhani, Tim Dietrich, Ulyana Dupletsa, Stefano Foffa, Gabriele Franciolini, Andreas Freise, Gianluca Gemme, Boris Goncharov, Archisman Ghosh, Francesca Gulminelli, Ish Gupta, Pawan Kumar Gupta, Jan Harms, Nandini Hazra, Stefan Hild, Tanja Hinderer, Ik Siong Heng, Francesco Iacovelli, Justin Janquart, Kamiel Janssens, Alexander C Jenkins, Chinmay Kalaghatgi, Xhesika Koroveshi, Tjonnie GF Li, Yufeng Li, Eleonora Loffredo, Elisa Maggio, Michele Mancarella, Michela Mapelli, Katarina Martinovic, Andrea Maselli, Patrick Meyers, Andrew L Miller, Chiranjib Mondal, Niccolò Muttoni, Harsh Narola, Micaela Oertel, Gor Oganesyan, Costantino Pacilio, Cristiano Palomba, Paolo Pani, Antonio Pasqualetti, Albino Perego, Carole Pèrigois, Mauro Pieroni, Ornella Juliana Piccinni, Anna Puecher, Paola Puppo, Angelo Ricciardone, Antonio Riotto, Samuele Ronchini, Mairi Sakellariadou, Anuradha Samajdar, Filippo Santoliquido, BS Sathyaprakash, Jessica Steinlechner, Sebastian Steinlechner, Andrei Utina, Chris Van Den Broeck, Teng Zhang
More details from the publisher

A hybrid map-Cℓ component separation method for primordial CMB B-mode searches

Journal of Cosmology and Astroparticle Physics IOP Publishing 2023:03 (2023) 035

Authors:

S Azzoni, D Alonso, Mh Abitbol, J Errard, N Krachmalnicoff

Abstract:

The observation of the polarised emission from the Cosmic Microwave Background (CMB) from future ground-based and satellite-borne experiments holds the promise of indirectly detecting the elusive signal from primordial tensor fluctuations in the form of large-scale B-mode polarisation. Doing so, however, requires an accurate and robust separation of the signal from polarised Galactic foregrounds. We present a component separation method for multi-frequency CMB observations that combines some of the advantages of map-based and power-spectrum-based techniques, and which is direcly applicable to data in the presence of realistic foregrounds and instrumental noise. We demonstrate that the method is able to reduce the contamination from Galactic foregrounds below an equivalent tensor-to-scalar ratio rFG ≲ 5 × 10-4, as required for next-generation observatories, for a wide range of foreground models with varying degrees of complexity. This bias reduction is associated with a mild ∼20–30% increase in the final statistical uncertainties, and holds for large sky areas, and for experiments targeting both the reionisation and recombination bumps in theB-mode power spectrum.

More details from the publisher
Details from ORA
More details

The N5K challenge: non-limber integration for LSST cosmology

(2023)

Authors:

C Danielle Leonard, Tassia Ferreira, Xiao Fang, Robert Reischke, Nils Schoeneberg, Tilman Tröster, David Alonso, Jean-Eric Campagne, François Lanusse, Anže Slosar, Mustapha Ishak
More details from the publisher
Details from ORA
Details from ArXiV

The Simons Observatory: pipeline comparison and validation for large-scale B-modes

(2023)

Authors:

K Wolz, S Azzoni, C Hervias-Caimapo, J Errard, N Krachmalnicoff, D Alonso, C Baccigalupi, A Baleato Lizancos, ML Brown, E Calabrese, J Chluba, J Dunkley, G Fabbian, N Galitzki, B Jost, M Morshed, F Nati
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • Current page 14
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet