Accuracy requirements on intrinsic alignments for Stage-IV cosmic shear
(2023)
A precise symbolic emulator of the linear matter power spectrum
(2023)
Impact of Galactic dust non-Gaussianity on searches for B-modes from inflation
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 527:3 (2023) 5751-5766
Abstract:
<jats:title>ABSTRACT</jats:title> <jats:p>A key challenge in the search for primordial B-modes is the presence of polarized Galactic foregrounds, especially thermal dust emission. Power-spectrum-based analysis methods generally assume the foregrounds to be Gaussian random fields when constructing a likelihood and computing the covariance matrix. In this paper, we investigate how non-Gaussianity in the dust field instead affects CMB and foreground parameter inference in the context of inflationary B-mode searches, capturing this effect via modifications to the dust power-spectrum covariance matrix. For upcoming experiments such as the Simons Observatory, we find no dependence of the tensor-to-scalar ratio uncertainty $\sigma (r)$ on the degree of dust non-Gaussianity or the nature of the dust covariance matrix. We provide an explanation of this result, noting that when frequency decorrelation is negligible, dust in mid-frequency channels is cleaned using high-frequency data in a way that is independent of the spatial statistics of dust. We show that our results hold also for non-zero levels of frequency decorrelation that are compatible with existing data. We find, however, that neglecting the impact of dust non-Gaussianity in the covariance matrix can lead to inaccuracies in goodness-of-fit metrics. Care must thus be taken when using such metrics to test B-mode spectra and models, although we show that any such problems can be mitigated by using only cleaned spectrum combinations when computing goodness-of-fit statistics.</jats:p>Constraining cosmology with the Gaia-unWISE Quasar Catalog and CMB lensing: structure growth
Journal of Cosmology and Astroparticle Physics IOP Publishing 2023:11 (2023) 43
Abstract:
We study the angular clustering of Quaia, a Gaia- and unWISE-based catalog of over a million quasars with an exceptionally well-defined selection function. With it, we derive cosmology constraints from the amplitude and growth of structure across cosmic time. We divide the sample into two redshift bins, centered at z = 1.0 and z = 2.1, and measure both overdensity auto-correlations and cross-correlations with maps of the Cosmic Microwave Background convergence measured by Planck. From these data, and including a prior from measurements of the baryon acoustic oscillations scale, we place constraints on the amplitude of the matter power spectrum σ8 = 0.766 ± 0.034, and on the matter density parameter Ωm = 0.343+0.017−0.019. These measurements are in reasonable agreement with Planck at the ∼ 1.4σ level, and are found to be robust with respect to observational and theoretical uncertainties. We find that our slightly lower value of σ8 is driven by the higher-redshift sample, which favours a low amplitude of matter fluctuations. We present plausible arguments showing that this could be driven by contamination of the CMB lensing map by high-redshift extragalactic foregrounds, which should also affect other cross-correlations with tracers of large-scale structure beyond z ∼ 1.5. Our constraints are competitive with those from state-of-the-art 3×2-point analyses, but arise from a range of scales and redshifts that is highly complementary to those covered by cosmic shear data and most galaxy clustering samples. This, coupled with the unprecedented combination of volume and redshift precision achieved by Quaia, allows us to break the usual degeneracy between Ωm and σ8.Cosmology from LOFAR Two-metre Sky Survey data release 2: angular clustering of radio sources
Monthly Notices of the Royal Astronomical Society Oxford University Press 527:3 (2023) 6540-6568