Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Quantum Network setup

Two vacuum chambers with segmented ion traps are used to create remote entanglement between atomic ions

Dr. Gabriel Araneda Machuca

Senior Researcher

Research theme

  • Quantum information and computation

Sub department

  • Atomic and Laser Physics

Research groups

  • Ion trap quantum computing
gabriel.aranedamachuca@physics.ox.ac.uk
Clarendon Laboratory
  • About
  • Publications

Controlling the spontaneous emission and entanglement of quantum scatterers via modulated reflection of their emitted photons

New Journal of Physics IOP Publishing 27:6 (2025) 064107

Authors:

Tommaso Faorlin, Benjamin Yadin, Gabriel Araneda, Stefan Nimmrichter, Yannick Weiser, Lorenz Panzl, Thomas Lafenthaler, Rainer Blatt, Thomas Monz, Giovanni Cerchiari

Abstract:

We propose an experimental setup for manipulating the spontaneous emission (SE) of quantum scatterers, based on a spatial light modulator. We discuss this idea in the case of trapped barium ions as quantum emitters. A first novelty is the potential to entangle more than two ions through a single photon detection event with programmable adaptive optics. Additionally, this setup can be used to control the SE of single-photons emitted collectively by spatially distinguished quantum emitters.
More details from the publisher
Details from ORA
More details

Experimental quantum advantage in the odd-cycle game

Physical Review Letters American Physical Society 134 (2025) 070201

Authors:

Peter Drmota, Dougal Main, Ellis Ainley, Ayush Agrawal, Gabriel Araneda, David P Nadlinger, Bethan Nichol, Raghavendra Srinivas, Adán Cabello, David M Lucas

Abstract:

We report the first experimental demonstration of the odd-cycle game. We entangle two atoms separated by ∼ 2 m and the players use them to win the odd-cycle game with a probability ∼ 26σ above that allowed by the best classical strategy. The experiment implements the optimal quantum strategy, is free of loopholes, and achieves 97.8(3) % of the theoretical limit to the quantum winning probability. We perform the associated Bell test and measure a nonlocal content of 0.54(2) – the largest value for physically separate devices, free of the detection loophole, ever observed.

More details from the publisher
Details from ORA
More details
More details

Distributed quantum computing across an optical network link

Nature Nature Research 638:8050 (2025) 383-388

Authors:

D Main, P Drmota, DP Nadlinger, EM Ainley, A Agrawal, BC Nichol, R Srinivas, G Araneda, DM Lucas

Abstract:

Distributed quantum computing (DQC) combines the computing power of multiple networked quantum processing modules, ideally enabling the execution of large quantum circuits without compromising performance or qubit connectivity1, 2. Photonic networks are well suited as a versatile and reconfigurable interconnect layer for DQC; remote entanglement shared between matter qubits across the network enables all-to-all logical connectivity through quantum gate teleportation (QGT)3, 4. For a scalable DQC architecture, the QGT implementation must be deterministic and repeatable; until now, no demonstration has satisfied these requirements. Here we experimentally demonstrate the distribution of quantum computations between two photonically interconnected trapped-ion modules. The modules, separated by about two metres, each contain dedicated network and circuit qubits. By using heralded remote entanglement between the network qubits, we deterministically teleport a controlled-Z (CZ) gate between two circuit qubits in separate modules, achieving 86% fidelity. We then execute Grover’s search algorithm5—to our knowledge, the first implementation of a distributed quantum algorithm comprising several non-local two-qubit gates—and measure a 71% success rate. Furthermore, we implement distributed iSWAP and SWAP circuits, compiled with two and three instances of QGT, respectively, demonstrating the ability to distribute arbitrary two-qubit operations6. As photons can be interfaced with a variety of systems, the versatile DQC architecture demonstrated here provides a viable pathway towards large-scale quantum computing for a range of physical platforms.
More details from the publisher
Details from ORA
More details
More details

Generating arbitrary superpositions of nonclassical quantum harmonic oscillator states

(2024)

Authors:

S Saner, O Băzăvan, DJ Webb, G Araneda, DM Lucas, CJ Ballance, R Srinivas
More details from the publisher
Details from ArXiV

Synthetic Z 2 gauge theories based on parametric excitations of trapped ions

Communications Physics Nature Research 7:1 (2024) 229

Authors:

Oana Bǎzǎvan, Sebastian Saner, Emanuelle Tirrito, Gabriel Araneda, Raghavendra Srinivas, Alejandro Bermudez

Abstract:

Resource efficient schemes for the quantum simulation of lattice gauge theories can benefit from hybrid encodings of gauge and matter fields that use the native degrees of freedom, such as internal qubits and motional phonons in trapped-ion devices. We propose to use a parametric scheme to induce a tunneling of the phonons conditioned to the internal qubit state which, when implemented with a single trapped ion, corresponds to a minimal Z2 gauge theory. To evaluate the feasibility of this scheme, we perform numerical simulations of the state-dependent tunneling using realistic parameters, and identify the leading sources of error in future experiments. We discuss how to generalize this minimal case to more complex settings by increasing the number of ions, moving from a single link to a Z2 plaquette, and to an entire Z2 chain. We present analytical expressions for the gauge-invariant dynamics and the corresponding confinement, which are benchmarked using matrix product state simulations.
More details from the publisher
Details from ORA
More details

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet