Synthetic Z 2 gauge theories based on parametric excitations of trapped ions
Communications Physics Nature Research 7:1 (2024) 229
Abstract:
Resource efficient schemes for the quantum simulation of lattice gauge theories can benefit from hybrid encodings of gauge and matter fields that use the native degrees of freedom, such as internal qubits and motional phonons in trapped-ion devices. We propose to use a parametric scheme to induce a tunneling of the phonons conditioned to the internal qubit state which, when implemented with a single trapped ion, corresponds to a minimal Z2 gauge theory. To evaluate the feasibility of this scheme, we perform numerical simulations of the state-dependent tunneling using realistic parameters, and identify the leading sources of error in future experiments. We discuss how to generalize this minimal case to more complex settings by increasing the number of ions, moving from a single link to a Z2 plaquette, and to an entire Z2 chain. We present analytical expressions for the gauge-invariant dynamics and the corresponding confinement, which are benchmarked using matrix product state simulations.Verifiable blind quantum computing with trapped ions and single photons
Physical Review Letters American Physical Society 132:15 (2024) 150604
Abstract:
We report the first hybrid matter-photon implementation of verifiable blind quantum computing. We use a trapped-ion quantum server and a client-side photonic detection system networked via a fiber-optic quantum link. The availability of memory qubits and deterministic entangling gates enables interactive protocols without postselection—key requirements for any scalable blind server, which previous realizations could not provide. We quantify the privacy at ≲0.03 leaked classical bits per qubit. This experiment demonstrates a path to fully verified quantum computing in the cloud.
Breaking the entangling gate speed limit for trapped-ion qubits using a phase-stable standing wave
Physical Review Letters American Physical Society 131:22 (2023) 220601
Abstract:
All laser-driven entangling operations for trapped-ion qubits have hitherto been performed without control of the optical phase of the light field, which precludes independent tuning of the carrier and motional coupling. By placing 88Sr+ ions in a λ=674 nm standing wave, whose relative position is controlled to ≈λ/100, we suppress the carrier coupling by a factor of 18, while coherently enhancing the spin-motion coupling. We experimentally demonstrate that the off-resonant carrier coupling imposes a speed limit for conventional traveling-wave Mølmer-Sørensen gates; we use the standing wave to surpass this limit and achieve a gate duration of 15 μs, restricted by the available laser power.Robust quantum memory in a trapped-ion quantum network node
Physical Review Letters American Physical Society 130 (2023) 090803
Abstract:
We integrate a long-lived memory qubit into a mixed-species trapped-ion quantum network node. Ion-photon entanglement first generated with a network qubit in 88Sr+ is transferred to 43Ca+ with 0.977(7) fidelity, and mapped to a robust memory qubit. We then entangle the network qubit with another photon, which does not affect the memory qubit. We perform quantum state tomography to show that the fidelity of ion-photon entanglement decays ∼ 70 times slower on the memory qubit. Dynamical decoupling further extends the storage time; we measure an ion-photon entanglement fidelity of 0.81(4) after 10 s.Robust quantum memory in a trapped-ion quantum network node
(2022)