Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Quantum Network setup

Two vacuum chambers with segmented ion traps are used to create remote entanglement between atomic ions

Dr. Gabriel Araneda Machuca

Senior Researcher

Research theme

  • Quantum information and computation

Sub department

  • Atomic and Laser Physics

Research groups

  • Ion trap quantum computing
gabriel.aranedamachuca@physics.ox.ac.uk
Clarendon Laboratory
  • About
  • Publications

Distributed quantum computing across an optical network link

Nature Nature Research 638:8050 (2025) 383-388

Authors:

D Main, P Drmota, DP Nadlinger, EM Ainley, A Agrawal, BC Nichol, R Srinivas, G Araneda, DM Lucas

Abstract:

Distributed quantum computing (DQC) combines the computing power of multiple networked quantum processing modules, ideally enabling the execution of large quantum circuits without compromising performance or qubit connectivity1, 2. Photonic networks are well suited as a versatile and reconfigurable interconnect layer for DQC; remote entanglement shared between matter qubits across the network enables all-to-all logical connectivity through quantum gate teleportation (QGT)3, 4. For a scalable DQC architecture, the QGT implementation must be deterministic and repeatable; until now, no demonstration has satisfied these requirements. Here we experimentally demonstrate the distribution of quantum computations between two photonically interconnected trapped-ion modules. The modules, separated by about two metres, each contain dedicated network and circuit qubits. By using heralded remote entanglement between the network qubits, we deterministically teleport a controlled-Z (CZ) gate between two circuit qubits in separate modules, achieving 86% fidelity. We then execute Grover’s search algorithm5—to our knowledge, the first implementation of a distributed quantum algorithm comprising several non-local two-qubit gates—and measure a 71% success rate. Furthermore, we implement distributed iSWAP and SWAP circuits, compiled with two and three instances of QGT, respectively, demonstrating the ability to distribute arbitrary two-qubit operations6. As photons can be interfaced with a variety of systems, the versatile DQC architecture demonstrated here provides a viable pathway towards large-scale quantum computing for a range of physical platforms.
More details from the publisher
Details from ORA
More details
More details

Synthetic Z 2 gauge theories based on parametric excitations of trapped ions

Communications Physics Nature Research 7:1 (2024) 229

Authors:

Oana Bǎzǎvan, Sebastian Saner, Emanuelle Tirrito, Gabriel Araneda, Raghavendra Srinivas, Alejandro Bermudez

Abstract:

Resource efficient schemes for the quantum simulation of lattice gauge theories can benefit from hybrid encodings of gauge and matter fields that use the native degrees of freedom, such as internal qubits and motional phonons in trapped-ion devices. We propose to use a parametric scheme to induce a tunneling of the phonons conditioned to the internal qubit state which, when implemented with a single trapped ion, corresponds to a minimal Z2 gauge theory. To evaluate the feasibility of this scheme, we perform numerical simulations of the state-dependent tunneling using realistic parameters, and identify the leading sources of error in future experiments. We discuss how to generalize this minimal case to more complex settings by increasing the number of ions, moving from a single link to a Z2 plaquette, and to an entire Z2 chain. We present analytical expressions for the gauge-invariant dynamics and the corresponding confinement, which are benchmarked using matrix product state simulations.
More details from the publisher
Details from ORA
More details

Verifiable blind quantum computing with trapped ions and single photons

Physical Review Letters American Physical Society 132:15 (2024) 150604

Authors:

P Drmota, Dp Nadlinger, D Main, Bc Nichol, Em Ainley, D Leichtle, A Mantri, E Kashefi, R Srinivas, G Araneda, Cj Ballance, Dm Lucas

Abstract:

We report the first hybrid matter-photon implementation of verifiable blind quantum computing. We use a trapped-ion quantum server and a client-side photonic detection system networked via a fiber-optic quantum link. The availability of memory qubits and deterministic entangling gates enables interactive protocols without postselection—key requirements for any scalable blind server, which previous realizations could not provide. We quantify the privacy at ≲0.03 leaked classical bits per qubit. This experiment demonstrates a path to fully verified quantum computing in the cloud.

More details from the publisher
Details from ORA
More details
More details

Breaking the entangling gate speed limit for trapped-ion qubits using a phase-stable standing wave

Physical Review Letters American Physical Society 131:22 (2023) 220601

Authors:

Sebastian Saner, Oana Băzăvan, M Minder, Peter Drmota, DJ Webb, Gabriel Araneda Machuca, Raghavendra Srinivas, David M Lucas, Christopher J Ballance

Abstract:

All laser-driven entangling operations for trapped-ion qubits have hitherto been performed without control of the optical phase of the light field, which precludes independent tuning of the carrier and motional coupling. By placing 88Sr+ ions in a λ=674  nm standing wave, whose relative position is controlled to ≈λ/100, we suppress the carrier coupling by a factor of 18, while coherently enhancing the spin-motion coupling. We experimentally demonstrate that the off-resonant carrier coupling imposes a speed limit for conventional traveling-wave Mølmer-Sørensen gates; we use the standing wave to surpass this limit and achieve a gate duration of 15  μs, restricted by the available laser power.
More details from the publisher
Details from ORA
More details
More details

Robust quantum memory in a trapped-ion quantum network node

Physical Review Letters American Physical Society 130 (2023) 090803

Authors:

Peter Drmota, Dougal Main, David P Nadlinger, Bethan Nichol, Marius A Weber, Ellis M Ainley, Ayush Agrawal, Raghavendra Srinivas, Gabriel Araneda, Chris J Ballance, David Lucas

Abstract:

We integrate a long-lived memory qubit into a mixed-species trapped-ion quantum network node. Ion-photon entanglement first generated with a network qubit in 88Sr+ is transferred to 43Ca+ with 0.977(7) fidelity, and mapped to a robust memory qubit. We then entangle the network qubit with another photon, which does not affect the memory qubit. We perform quantum state tomography to show that the fidelity of ion-photon entanglement decays ∼ 70 times slower on the memory qubit. Dynamical decoupling further extends the storage time; we measure an ion-photon entanglement fidelity of 0.81(4) after 10 s.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet