Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Hannah Christensen (she/her)

Associate Professor

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Atmospheric processes
Hannah.Christensen@physics.ox.ac.uk
Telephone: 01865 (2)72908
Atmospheric Physics Clarendon Laboratory, room F52
  • About
  • Teaching
  • Talks and Media
  • DPhil applicants
  • Publications

Insights into the quantification and reporting of model-related uncertainty across different disciplines.

iScience Cell Press 25:12 (2022) 105512

Authors:

Emily G Simmonds, Kwaku Peprah Adjei, Christoffer Wold Andersen, Hannah Christensen

Abstract:

Quantifying uncertainty associated with our models is the only way we can express how much we know about any phenomenon. Incomplete consideration of model-based uncertainties can lead to overstated conclusions with real-world impacts in diverse spheres, including conservation, epidemiology, climate science, and policy. Despite these potentially damaging consequences, we still know little about how different fields quantify and report uncertainty. We introduce the “sources of uncertainty” framework, using it to conduct a systematic audit of model-related uncertainty quantification from seven scientific fields, spanning the biological, physical, and political sciences. Our interdisciplinary audit shows no field fully considers all possible sources of uncertainty, but each has its own best practices alongside shared outstanding challenges. We make ten easy-to-implement recommendations to improve the consistency, completeness, and clarity of reporting on model-related uncertainty. These recommendations serve as a guide to best practices across scientific fields and expand our toolbox for high-quality research.

More details from the publisher
Details from ORA
More details
More details

Interpretable deep learning for probabilistic MJO prediction

Geophysical Research Letters Wiley 49:16 (2022) e2022GL098566

Authors:

Antoine Delaunay, Hannah Christensen

Abstract:

The Madden-Julian oscillation (MJO) is the dominant source of sub-seasonal variability in the tropics. It consists of an Eastward moving region of enhanced convection coupled to changes in zonal winds. It is not possible to predict the precise evolution of the MJO, so sub-seasonal forecasts are generally probabilistic. We present a deep convolutional neural network (CNN) that produces skilful state-dependent probabilistic MJO forecasts. Importantly, the CNN's forecast uncertainty varies depending on the instantaneous predictability of the MJO. The CNN accounts for intrinsic chaotic uncertainty by predicting the standard deviation about the mean, and model uncertainty using Monte-Carlo dropout. Interpretation of the CNN mean forecasts highlights known MJO mechanisms, providing confidence in the model. Interpretation of forecast uncertainty indicates mechanisms governing MJO predictability. In particular, we find an initially stronger MJO signal is associated with more uncertainty, and that MJO predictability is affected by the state of the Walker Circulation.
More details from the publisher
Details from ORA
More details

Interpretable Deep Learning for Probabilistic MJO Prediction

Copernicus Publications (2022)

Authors:

Hannah Christensen, Antoine Delaunay
More details from the publisher

The fractal nature of clouds in global storm-resolving models

Geophysical Research Letters American Geophysical Union 48:23 (2021) e2021GL095746

Authors:

Hannah M Christensen, Oliver GA Driver

Abstract:

Clouds in observations are fractals: they show self-similarity across scales ranging from one to 1000 km. This includes individual storms and large-scale cloud structures typical of organised convection. It is not known whether global storm-resolving models reproduce the observed fractal scaling laws for clouds and organised convection. We compute the fractal dimension of clouds using Himawari satellite data and compare this to global storm-resolving model simulations completed as part of the DYAMOND intercomparison project. We find cloud fields in these simulations are indeed fractal, and reproduce the observed fractal dimension to within 10%. We find the fractal dimension is sensitive to the choice of boundary layer parametrisation scheme used in each model simulation, and not to the convection parametrisation as might have been expected.
More details from the publisher
Details from ORA
More details

Opportunities and challenges for machine learning in weather and climate modelling: hard, medium and soft AI.

Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 379:2194 (2021) ARTN 20200083

Authors:

Matthew Chantry, Hannah Christensen, Peter Dueben, Tim Palmer

Abstract:

In September 2019, a workshop was held to highlight the growing area of applying machine learning techniques to improve weather and climate prediction. In this introductory piece, we outline the motivations, opportunities and challenges ahead in this exciting avenue of research. This article is part of the theme issue 'Machine learning for weather and climate modelling'.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Current page 6
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet