Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Hannah Christensen (she/her)

Associate Professor

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Atmospheric processes
Hannah.Christensen@physics.ox.ac.uk
Telephone: 01865 (2)72908
Atmospheric Physics Clarendon Laboratory, room F52
  • About
  • Teaching
  • Talks and Media
  • DPhil applicants
  • Publications

Parametrization in weather and climate models

Oxford Research Encyclopedia of Climate Science Oxford University Press (2022)

Authors:

Hannah Christensen, Laure Zanna

Abstract:

Numerical computer models play a key role in Earth science. They are used to make predictions on timescales ranging from short-range weather forecasts to multi-century climate projections. Computer models are also used as tools to understand the past, present, and future climate system, enabling numerical experiments to be carried out to explore physical processes of interest. To understand the behavior of these models, their formulation must be appreciated, including the simplifications and approximations employed in developing the model code.


Foremost among these approximations are the parametrization schemes used to represent subgrid scale physical processes. A useful mathematical formulation of parametrization often involves Reynolds averaging, whereby a flow described by the Navier–Stokes equations is separated into a slow, resolved component and a fast, unresolved component. On performing this decomposition, the component representing the unresolved, fast processes is shown to impact the resolved scale flow: It is this component that a parametrization seeks to represent.


Parametrization schemes encode the understanding of the salient physics needed to describe processes in the atmosphere and ocean and other components of the Earth system, such as land and ice. For example, finding the relationship between the Reynolds stresses and the mean fields of the system is the turbulence closure problem, which is common to both atmospheric and oceanic numerical models. Atmospheric parametrization schemes include those representing radiation, clouds and cloud microphysics, moist convection, gravity waves, and the boundary layer (which encompasses a representation of turbulent mixing). In the ocean, eddy processes must also be parametrized, including stirring and mixing due to both sub-mesoscale and mesoscale eddies. The similarities between the parametrization problem in atmospheric and oceanic models facilitate transfer of knowledge between these two communities, such that promising avenues of research in one community can in principle readily be adapted and adopted by the other.

More details from the publisher
Details from ORA

Insights into the quantification and reporting of model-related uncertainty across different disciplines.

iScience Cell Press 25:12 (2022) 105512

Authors:

Emily G Simmonds, Kwaku Peprah Adjei, Christoffer Wold Andersen, Hannah Christensen

Abstract:

Quantifying uncertainty associated with our models is the only way we can express how much we know about any phenomenon. Incomplete consideration of model-based uncertainties can lead to overstated conclusions with real-world impacts in diverse spheres, including conservation, epidemiology, climate science, and policy. Despite these potentially damaging consequences, we still know little about how different fields quantify and report uncertainty. We introduce the “sources of uncertainty” framework, using it to conduct a systematic audit of model-related uncertainty quantification from seven scientific fields, spanning the biological, physical, and political sciences. Our interdisciplinary audit shows no field fully considers all possible sources of uncertainty, but each has its own best practices alongside shared outstanding challenges. We make ten easy-to-implement recommendations to improve the consistency, completeness, and clarity of reporting on model-related uncertainty. These recommendations serve as a guide to best practices across scientific fields and expand our toolbox for high-quality research.

More details from the publisher
Details from ORA
More details
More details

Interpretable deep learning for probabilistic MJO prediction

Geophysical Research Letters Wiley 49:16 (2022) e2022GL098566

Authors:

Antoine Delaunay, Hannah Christensen

Abstract:

The Madden-Julian oscillation (MJO) is the dominant source of sub-seasonal variability in the tropics. It consists of an Eastward moving region of enhanced convection coupled to changes in zonal winds. It is not possible to predict the precise evolution of the MJO, so sub-seasonal forecasts are generally probabilistic. We present a deep convolutional neural network (CNN) that produces skilful state-dependent probabilistic MJO forecasts. Importantly, the CNN's forecast uncertainty varies depending on the instantaneous predictability of the MJO. The CNN accounts for intrinsic chaotic uncertainty by predicting the standard deviation about the mean, and model uncertainty using Monte-Carlo dropout. Interpretation of the CNN mean forecasts highlights known MJO mechanisms, providing confidence in the model. Interpretation of forecast uncertainty indicates mechanisms governing MJO predictability. In particular, we find an initially stronger MJO signal is associated with more uncertainty, and that MJO predictability is affected by the state of the Walker Circulation.
More details from the publisher
Details from ORA
More details

Interpretable Deep Learning for Probabilistic MJO Prediction

Copernicus Publications (2022)

Authors:

Hannah Christensen, Antoine Delaunay
More details from the publisher

The fractal nature of clouds in global storm-resolving models

Geophysical Research Letters American Geophysical Union 48:23 (2021) e2021GL095746

Authors:

Hannah M Christensen, Oliver GA Driver

Abstract:

Clouds in observations are fractals: they show self-similarity across scales ranging from one to 1000 km. This includes individual storms and large-scale cloud structures typical of organised convection. It is not known whether global storm-resolving models reproduce the observed fractal scaling laws for clouds and organised convection. We compute the fractal dimension of clouds using Himawari satellite data and compare this to global storm-resolving model simulations completed as part of the DYAMOND intercomparison project. We find cloud fields in these simulations are indeed fractal, and reproduce the observed fractal dimension to within 10%. We find the fractal dimension is sensitive to the choice of boundary layer parametrisation scheme used in each model simulation, and not to the convection parametrisation as might have been expected.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Current page 6
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet