Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Prof Michael Barnes

Professor in Theoretical Physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Theoretical astrophysics and plasma physics at RPC
michael.barnes@physics.ox.ac.uk
Telephone: 01865 (2)73960
Rudolf Peierls Centre for Theoretical Physics, room 50.10
  • About
  • Publications

Linearized Model Fokker-Planck Collision Operators for Gyrokinetic Simulations, II. Numerics

Phys. Plasmas 16 (2008) 072107

Authors:

M Barnes, IG Abel, T Tatsuno, AA Schekochihin, SC Cowley, W Dorland

Gyrokinetic linear theory of the entropy mode in a Z pinch

Physics of Plasmas AIP Publishing 13:6 (2006) 062102

Authors:

Paolo Ricci, BN Rogers, W Dorland, M Barnes
More details from the publisher

Constraints on ion vs. electron heating by plasma turbulence at low beta

Authors:

ALEXANDER Schekochihin, Y Kawazura, MA Barnes

Abstract:

It is shown that in low-beta plasmas, such as the solar corona, some instances of the solar wind, the aurora, inner regions of accretion discs, their coronae, and some laboratory plasmas, Alfvenic fluctuations produce no ion heating within the gyrokinetic approximation, i.e., as long as their amplitudes (at the Larmor scale) are small and their frequencies stay below the ion Larmor frequency. Thus, all low-frequency ion heating in such plasmas is due to compressive fluctuations: density perturbations and non-Maxwellian perturbations of the ion distribution function. Because these fluctuations energetically decouple from the Alfvenic ones already in the inertial range, the above conclusion means that the energy partition between ions and electrons in low-beta plasmas is decided at the outer scale, where turbulence is launched, and can in principle be determined from MHD models of the relevant astrophysical systems. Any additional ion heating must come from non-gyrokinetic mechanisms such as cyclotron heating or the stochastic heating owing to distortions of ions' Larmor orbits. An exception to these conclusions occurs in the Hall limit, i.e., when the ratio of the ion to electron temperatures is as low as the ion beta (equivalently, the electron beta is order unity). In this regime, compressive fluctuations (slow waves) couple to Alfvenic ones above the Larmor scale (viz., at the ion inertial or ion sound scale), the Alfvenic and compressive cascades join and then separate again into cascades of fluctuations that linearly resemble kinetic Alfven and (oblique) ion cyclotron waves, with the former heating electrons and the latter ions. The two cascades are shown to decouple, scalings for them are derived, and it is argued physically that the two species will be heated by them at approximately equal rates.
More details
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 29
  • Page 30
  • Page 31
  • Page 32
  • Page 33
  • Page 34
  • Page 35
  • Page 36
  • Current page 37

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet