Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.

Prof Michael Barnes

Professor in Theoretical Physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Theoretical astrophysics and plasma physics at RPC
michael.barnes@physics.ox.ac.uk
Telephone: 01865 (2)73960
Rudolf Peierls Centre for Theoretical Physics, room 50.10
  • About
  • Publications

Three-dimensional inhomogeneity of electron-temperature-gradient turbulence in the edge of tokamak plasmas

Nuclear Fusion IOP Publishing (2022)

Authors:

Jason Parisi, Felix I Parra, Colin M Roach, Michael Richard Hardman, Alex Schekochihin, Ian Abel, Nobuyuki Aiba, Justin Ball, Michael Barnes, Benjamin Chapman-Oplopoiou, David Dickinson, William D Dorland, Carine Giroud, David R Hatch, Jon Hillesheim, Juan Ruiz Ruiz, Samuli Saarelma, Denis A St-Onge

Abstract:

Abstract Nonlinear multiscale gyrokinetic simulations of a Joint European Torus edge pedestal are used to show that electron-temperature-gradient (ETG) turbulence has a rich three-dimensional structure, varying strongly according to the local magnetic-field configuration. In the plane normal to the magnetic field, the steep pedestal electron temperature gradient gives rise to anisotropic turbulence with a radial (normal) wavelength much shorter than in the binormal direction. In the parallel direction, the location and parallel extent of the turbulence are determined by the variation in the magnetic drifts and finite-Larmor-radius (FLR) effects. The magnetic drift and FLR topographies have a perpendicular-wavelength dependence, which permits turbulence intensity maxima near the flux-surface top and bottom at longer binormal scales, but constrains turbulence to the outboard midplane at shorter electron-gyroradius binormal scales. Our simulations show that long-wavelength ETG turbulence does not transport heat efficiently, and significantly decreases overall ETG transport -- in our case by $\sim$40 \% -- through multiscale interactions.
More details from the publisher

Energy partition between Alfvénic and compressive fluctuations in magnetorotational turbulence with near-azimuthal mean magnetic field

Journal of Plasma Physics 88:3 (2022)

Authors:

Y Kawazura, AA Schekochihin, M Barnes, W Dorland, SA Balbus

Abstract:

The theory of magnetohydrodynamic (MHD) turbulence predicts that Alfvénic and slow-mode-like compressive fluctuations are energetically decoupled at small scales in the inertial range. The partition of energy between these fluctuations determines the nature of dissipation, which, in many astrophysical systems, happens on scales where plasma is collisionless. However, when the magnetorotational instability (MRI) drives the turbulence, it is difficult to resolve numerically the scale at which both types of fluctuations start to be decoupled because the MRI energy injection occurs in a broad range of wavenumbers, and both types of fluctuations are usually expected to be coupled even at relatively small scales. In this study, we focus on collisional MRI turbulence threaded by a near-azimuthal mean magnetic field, which is naturally produced by the differential rotation of a disc. We show that, in such a case, the decoupling scales are reachable using a reduced MHD model that includes differential-rotation effects. In our reduced MHD model, the Alfvénic and compressive fluctuations are coupled only through the linear terms that are proportional to the angular velocity of the accretion disc. We numerically solve for the turbulence in this model and show that the Alfvénic and compressive fluctuations are decoupled at the small scales of our simulations as the nonlinear energy transfer dominates the linear coupling below the MRI-injection scale. In the decoupling scales, the energy flux of compressive fluctuations contained in the small scales is almost double that of Alfvénic fluctuations. Finally, we discuss the application of this result to prescriptions of ion-to-electron heating ratio in hot accretion flows.
More details from the publisher

Electrostatic gyrokinetic simulations in Wendelstein 7-X geometry: benchmark between the codes stella and GENE

Journal of Plasma Physics Cambridge University Press (CUP) 88:3 (2022) 905880310

Authors:

A González-Jerez, P Xanthopoulos, JM García-Regaña, I Calvo, J Alcusón, A Bañón Navarro, M Barnes, FI Parra, J Geiger

Abstract:

The first experimental campaigns have proven that, due to the optimization of the magnetic configuration with respect to neoclassical transport, the contribution of turbulence is essential to understand and predict the total particle and energy transport in Wendelstein 7-X (W7-X). This has spurred much work on gyrokinetic modelling for the interpretation of the available experimental results and for the preparation of the next campaigns. At the same time, new stellarator gyrokinetic codes have just been or are being developed. It is therefore desirable to have a sufficiently complete, documented and verified set of gyrokinetic simulations in W7-X geometry against which new codes or upgrades of existing codes can be tested and benchmarked. This paper attempts to provide such a set of simulations in the form of a comprehensive benchmark between the recently developed code stella and the well-established code GENE. The benchmark consists of electrostatic gyrokinetic simulations in the W7-X magnetic geometry and includes different flux tubes, linear ion-temperature-gradient (ITG) and trapped-electron-mode stability analyses, computation of linear zonal-flow responses and calculation of ITG-driven heat fluxes.
More details from the publisher

Extended electron tails in electrostatic microinstabilities and the nonadiabatic response of passing electrons

Plasma Physics and Controlled Fusion IOP Publishing 64:5 (2022) 055004-055004

Authors:

MR Hardman, FI Parra, C Chong, T Adkins, MS Anastopoulos-Tzanis, M Barnes, D Dickinson, JF Parisi, H Wilson

Abstract:

Abstract Ion-gyroradius-scale microinstabilities typically have a frequency comparable to the ion transit frequency. Due to the small electron-to-ion mass ratio and the large electron transit frequency, it is conventionally assumed that passing electrons respond adiabatically in ion-gyroradius-scale modes. However, in gyrokinetic simulations of ion-gyroradius-scale modes in axisymmetric toroidal magnetic fields, the nonadiabatic response of passing electrons can drive the mode, and generate fluctuations in narrow radial layers, which may have consequences for turbulent transport in a variety of circumstances. In flux tube simulations, in the ballooning representation, these instabilities reveal themselves as modes with extended tails. The small electron-to-ion mass ratio limit of linear gyrokinetics for electrostatic instabilities is presented, in axisymmetric toroidal magnetic geometry, including the nonadiabatic response of passing electrons and associated narrow radial layers. This theory reveals the existence of ion-gyroradius-scale modes driven solely by the nonadiabatic passing electron response, and recovers the usual ion-gyroradius-scale modes driven by the response of ions and trapped electrons, where the nonadiabatic response of passing electrons is small. The collisionless and collisional limits of the theory are considered, demonstrating parallels in structure and physical processes to neoclassical transport theory. By examining initial-value simulations of the fastest-growing eigenmodes, the predictions for mass-ratio scaling are tested and verified numerically for a range of collision frequencies. Insight from the small electron-to-ion mass ratio theory may lead to a computationally efficient treatment of extended modes.
More details from the publisher

Interpreting radial correlation Doppler reflectometry using gyrokinetic simulations

Plasma Physics and Controlled Fusion 64:5 (2022)

Authors:

J Ruiz Ruiz, FI Parra, VH Hall-Chen, N Christen, M Barnes, J Candy, J Garcia, C Giroud, W Guttenfelder, JC Hillesheim, C Holland, NT Howard, Y Ren, AE White

Abstract:

A linear response, local model for the DBS amplitude applied to gyrokinetic simulations shows that radial correlation Doppler reflectometry measurements (RCDR, Schirmer et al 2007 Plasma Phys. Control. Fusion 49 1019) are not sensitive to the average turbulence radial correlation length, but to a correlation length that depends on the binormal wavenumber k⊥ selected by the Doppler backscattering (DBS) signal. Nonlinear gyrokinetic simulations show that the turbulence naturally exhibits a nonseparable power law spectrum in wavenumber space, leading to a power law dependence of the radial correlation length with binormal wavenumber lr∼Ck⊥-α(α≈1) which agrees with the inverse proportionality relationship between the measured lr and k⊥ observed in experiments (Fernández-Marina et al 2014 Nucl. Fusion 54 072001). This new insight indicates that RCDR characterizes the eddy aspect ratio in the perpendicular plane to the magnetic field. It also motivates future use of a nonseparable turbulent spectrum to quantitatively interpret RCDR and potentially other turbulence diagnostics. The radial correlation length is only measurable when the radial resolution at the cutoff location Wn satisfies Wn≪lr, while the measurement becomes dominated by Wn for Wn≫lr . This suggests that lr is likely to be inaccessible for electron-scale DBS measurements (k⊥ρs>1 ). The effect of Wn on ion-scale radial correlation lengths could be nonnegligible.
More details from the publisher

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet