Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Prof Michael Barnes

Professor in Theoretical Physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Theoretical astrophysics and plasma physics at RPC
michael.barnes@physics.ox.ac.uk
Telephone: 01865 (2)73960
Rudolf Peierls Centre for Theoretical Physics, room 50.10
  • About
  • Publications

Measuring the beamlet divergence in NBI systems for fusion: A diagnostic comparison

Fusion Engineering and Design Elsevier 215 (2025) 114951

Authors:

Niek den Harder, Michael Barnes, Andreas Döring, Bernd Heinemann, Bruno Laterza, Isabella Mario, Antonio Pimazzoni, Carlo Poggi, Alessandro La Rosa, Emanuele Sartori, Beatrice Segalini, Gianluigi Serianni, Alastair Shepherd, Christian Wimmer, Dirk Wünderlich, Ursel Fantz
More details from the publisher

Suppression of temperature-gradient-driven turbulence by sheared flows in fusion plasmas

Journal of Plasma Physics Cambridge University Press (CUP) 91:2 (2025) e58

Authors:

PG Ivanov, T Adkins, D Kennedy, M Giacomin, M Barnes, AA Schekochihin
More details from the publisher
More details

Measurement of Zero-Frequency Fluctuations Generated by Coupling between Alfvén Modes in the JET Tokamak.

Physical review letters American Physical Society (APS) 134:9 (2025) 95103

Authors:

J Ruiz Ruiz, J Garcia, M Barnes, M Dreval, C Giroud, Vh Hall-Chen, Mr Hardman, Jc Hillesheim, Y Kazakov, S Mazzi, Bs Patel, Fi Parra, Aa Schekochihin, Ž Štancar, JET Contributors and the EUROfusion Tokamak Exploitation Team

Abstract:

We report the first experimental detection of a zero-frequency fluctuation that is pumped by an Alfvén mode in a magnetically confined plasma. Core-localized Alfvén modes of frequency inside the toroidicity-induced gap (and its harmonics) exhibit three-wave coupling interactions with a zero-frequency fluctuation. The observation of the zero-frequency fluctuation is consistent with theoretical and numerical predictions of zonal modes pumped by Alfvén modes, and is correlated with an increase in the deep core ion temperature, temperature gradient, confinement factor H_{89,P}, and a reduction in the main ion heat diffusivity. Despite the energetic particle transport induced by the Alfvén eigenmodes, the generation of a zero-frequency fluctuation that can suppress the turbulence leads to an overall improvement of confinement.
More details from the publisher
More details

Insights into stripping losses of negative ions in an ITER-like pre-acceleration system

Plasma Physics and Controlled Fusion IOP Publishing 67:1 (2025) 015011

Authors:

A Navarro, M Barnes, N den Harder, D Wünderlich, U Fantz
More details from the publisher

Influence of the density gradient on turbulent heat transport at ion-scales: an inter-machine study with the gyrokinetic code stella

Nuclear Fusion IOP Publishing 65:1 (2025) 016062

Authors:

H Thienpondt, JM García-Regaña, I Calvo, G Acton, M Barnes
More details from the publisher
More details

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet