Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
post it note DNA

Dr Jon Bath

Group Leader

Research theme

  • Biological physics

Sub department

  • Condensed Matter Physics

Research groups

  • Nucleic acid nanotechnology
jonathan.bath@physics.ox.ac.uk
Biochemistry Building, room 30-092
  • About
  • Publications

Multistep DNA-templated reactions for the synthesis of functional sequence controlled oligomers.

Angew Chem Int Ed Engl 49:43 (2010) 7948-7951

Authors:

Mireya L McKee, Phillip J Milnes, Jonathan Bath, Eugen Stulz, Andrew J Turberfield, Rachel K O'Reilly
More details from the publisher
More details

DNA nanomachines

Chapter in Nanoscience and Technology, World Scientific Publishing (2009) 124-133

Authors:

JONATHAN BATH, ANDREW J TURBERFIELD
More details from the publisher

DNA monofunctionalization of quantum dots.

Chembiochem 10:11 (2009) 1781-1783

Authors:

Helen MJ Carstairs, Kostas Lymperopoulos, Achillefs N Kapanidis, Jonathan Bath, Andrew J Turberfield
More details from the publisher
More details

Mechanism for a directional, processive, and reversible DNA motor.

Small 5:13 (2009) 1513-1516

Authors:

Jonathan Bath, Simon J Green, Katherine E Allen, Andrew J Turberfield
More details from the publisher
Details from ORA
More details

Coordinated chemomechanical cycles: a mechanism for autonomous molecular motion.

Phys Rev Lett 101:23 (2008) 238101

Authors:

SJ Green, J Bath, AJ Turberfield

Abstract:

The second law of thermodynamics requires that directed motion be accompanied by dissipation of energy. Here we demonstrate the working principles of a bipedal molecular motor. The motor is constructed from DNA and is driven by the hybridization of a DNA fuel. We show how the catalytic activities of the feet can be coordinated to create a Brownian ratchet that is in principle capable of directional and processive movement along a track. This system can be driven away from equilibrium, demonstrating the potential of the motor to do work.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • Current page 11
  • Page 12
  • Page 13
  • Page 14
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet