Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
post it note DNA

Dr Jon Bath

Group Leader

Research theme

  • Biological physics

Sub department

  • Condensed Matter Physics

Research groups

  • Nucleic acid nanotechnology
jonathan.bath@physics.ox.ac.uk
Biochemistry Building, room 30-092
  • About
  • Publications

Dimensions and global twist of single-layer DNA origami measured by small-angle X-ray scattering

ACS Nano American Chemical Society 12:6 (2018) 5791-5799

Authors:

MAB Baker, AJ Tuckwell, JF Berengut, Jonathan Bath, Florence Benn, AP Duff, AE Whitten, Katherine Dunn, RM Hynson, Andrew Turberfield, LK Lee

Abstract:

The rational design of complementary DNA sequences can be used to create nanostructures that self-assemble with nanometer precision. DNA nanostructures have been imaged by atomic force microscopy and electron microscopy. Small-angle X-ray scattering (SAXS) provides complementary structural information on the ensemble-averaged state of DNA nanostructures in solution. Here we demonstrate that SAXS can distinguish between different single-layer DNA origami tiles that look identical when immobilized on a mica surface and imaged with atomic force microscopy. We use SAXS to quantify the magnitude of global twist of DNA origami tiles with different crossover periodicities: these measurements highlight the extreme structural sensitivity of single-layer origami to the location of strand crossovers. We also use SAXS to quantify the distance between pairs of gold nanoparticles tethered to specific locations on a DNA origami tile and use this method to measure the overall dimensions and geometry of the DNA nanostructure in solution. Finally, we use indirect Fourier methods, which have long been used for the interpretation of SAXS data from biomolecules, to measure the distance between DNA helix pairs in a DNA origami nanotube. Together, these results provide important methodological advances in the use of SAXS to analyze DNA nanostructures in solution and insights into the structures of single-layer DNA origami.
More details from the publisher
Details from ORA
More details
More details

Chiral DNA origami nanotubes with well‐defined and addressable inside and outside surfaces

Angewandte Chemie International Edition Wiley‐VCH Verlag 57:26 (2018) 7687-7690

Authors:

F Benn, Natalie EC Haley, Alexandra E Lucas, Emma Silvester, Seham Helmi, R Schreiber, Jonathan Bath, Andrew J Turberfield

Abstract:

We report the design and assembly of chiral DNA nanotubes with well‐defined and addressable inside and outside surfaces. We demonstrate that the outside surface can be functionalised with a chiral arrangement of gold nanoparticles to create a plasmonic device and that the inside surface can be functionalised with a track for a molecular motor allowing transport of a cargo within the central cavity.
More details from the publisher
Details from ORA
More details
More details

DNA origami nanostructured surfaces for enhanced detection of molecular interactions

22nd International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2018 1 (2018) 16-19

Authors:

D Daems, I Rutten, W Pfeifer, D Decrop, D Spasic, J Bath, B Saccà, A Turberfield, J Lammertyn

Abstract:

The performance of biosensors strongly depends on the nanoarchitecture of the biosensing surface. In many studies the bioreceptor density, orientation and accessibility are often overlooked, resulting in suboptimal biosensing devices. Here, DNA origami structures were decorated with aptamers and studied as a novel tool to structure the biosensor surface with nanoscale precision, favoring interaction between target and aptamer. Using this novel method to engineer biosensing interfaces of two in-house developed biosensing platforms, we were able to accurately detect the presence of a specific target and to compete with existing biosensors in reproducibility, SNR and LOD, without the need for backfilling.

Rational design of hidden thermodynamic driving through DNA mismatch repair

(2018)

Authors:

Natalie Haley, Thomas Ouldridge, Alessandro Geraldini, Ard Louis, Jonathan Bath, Andrew Turberfield
More details from the publisher

DNA T-junctions for studies of DNA origami assembly

EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS 46 (2017) S139-S139

Authors:

KG Young, B Najafi, J Bath, AJ Turberfield
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet