Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
post it note DNA

Dr Jon Bath

Group Leader

Research theme

  • Biological physics

Sub department

  • Condensed Matter Physics

Research groups

  • Nucleic acid nanotechnology
jonathan.bath@physics.ox.ac.uk
Biochemistry Building, room 30-092
  • About
  • Publications

DNA transport in bacteria.

Nat Rev Mol Cell Biol 2:7 (2001) 538-545

Authors:

J Errington, J Bath, LJ Wu

Abstract:

DNA transport is important in various biological contexts--particularly chromosome segregation and intercellular gene transfer. Recently, progress has been made in understanding the function of a family of bacterial proteins involved in DNA transfer, and we focus here on one of the best-understood members, SpoIIIE. Studies of SpoIIIE-like proteins show that they might couple DNA transport to processes such as cell division, conjugation (mating) and the resolution of chromosome dimers.
More details from the publisher
More details

Topology of Xer recombination on catenanes produced by lambda integrase.

J Mol Biol 289:4 (1999) 873-883

Authors:

J Bath, DJ Sherratt, SD Colloms

Abstract:

Xer site-specific recombination at the psi site from plasmid pSC101 displays topological selectivity, such that recombination normally occurs only between directly repeated sites on the same circular DNA molecule. This intramolecular selectivity is important for the biological role of psi, and is imposed by accessory proteins PepA and ArcA acting at accessory DNA sequences adjacent to the core recombination site. Here we show that the selectivity for intramolecular recombination at psi can be bypassed in multiply interlinked catenanes. Xer site-specific recombination occurred relatively efficiently between antiparallel psi sites located on separate rings of right-handed torus catenanes containing six or more nodes. This recombination introduced one additional node into the catenanes. Antiparallel sites on four-noded right-handed catenanes, the normal product of Xer recombination at psi, were not recombined efficiently. Furthermore, parallel psi sites on right-handed torus catenanes were not substrates for Xer recombination. These findings support a model in which psi sites are plectonemically interwrapped, trapping a precise number of supercoils that are converted to four catenation nodes by Xer strand exchange.
More details from the publisher
More details

Topological selectivity in Xer site-specific recombination.

Cell 88:6 (1997) 855-864

Authors:

SD Colloms, J Bath, DJ Sherratt

Abstract:

The product topology of Xer-mediated site-specific recombination at plasmid sites has been determined. The product of deletion at pSC101 psi is a right-handed antiparallel 4-noded catenane. The ColE1 cer deletion product has an identical topology, except that only one pair of strands is exchanged. These specific product topologies imply that the productive synaptic complex and the strand exchange mechanism have fixed topologies. Further analysis suggests that synapsis traps exactly three negative supercoils between recombining sites, and that strand exchange introduces a further negative topological node in the deletion reaction. We present a model in which the requirement for a specific synaptic stucture, with two recombination sites interwrapped around the accessory proteins ArgR and PepA, ensures that recombination only occurs efficiently between directly repeated sites on the same DNA molecule.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • Current page 13

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet