DNA-PAINT microscope data of a DNA nanostructure printer
University of Oxford (2022)
Abstract:
This dataset consist of reconstructed DNA-PAINT images of DNA origami based molecular devices. This is the data from the paper "A DNA molecular printer capable of programmable positioning and patterning in two dimensions". The data is structures after the figure of the paper. It is reconstructed and can be opened using the DNA-PAINT software Picasso. The data is described by what DNA paint probe was used to image it, corresponding to multiple image channels. 'P1' is the DNA-PAINT docking handle used on the frame and the canvas, 'R1' is the DNA-PAINT docking handle used on the sleeve, and 'R3' is the DNA-PAINT docking handle used on the ink patterned on the canvas.Strategies for constructing and operating DNA origami linear actuators
Small Wiley 17:20 (2021) 2007704
Abstract:
Linear actuators are ubiquitous components at all scales of engineering. DNA nanotechnology offers a unique opportunity for bottom-up assembly at the molecular scale, providing nanoscale precision with multiple methods for constructing and operating devices. In this paper, DNA origami linear actuators with up to 200 nm travel, based on a rail threading a topologically locked slider, are demonstrated. Two strategies, one- and two-pot assembly, are demonstrated whereby the two components are folded from one or two DNA scaffold strands, respectively. In order to control the position of the slider on the rail, the rail and the inside of the slider are decorated with single-stranded oligonucleotides with distinct sequences. Two positioning strategies, based on diffusion and capture of signaling strands, are used to link the slider reversibly to determined positions on the rail with high yield and precision. These machine components provide a basis for applications in molecular machinery and nanoscale manufacture including programmed chemical synthesis.DNA origami signposts for identifying proteins on cell membranes by electron cryotomography
Cell Cell Press 184:4 (2021) 1110-1121.e16
Abstract:
Electron cryotomography (cryoET), an electron cryomicroscopy (cryoEM) modality, has changed our understanding of biological function by revealing the native molecular details of membranes, viruses, and cells. However, identification of individual molecules within tomograms from cryoET is challenging because of sample crowding and low signal-to-noise ratios. Here, we present a tagging strategy for cryoET that precisely identifies individual protein complexes in tomograms without relying on metal clusters. Our method makes use of DNA origami to produce “molecular signposts” that target molecules of interest, here via fluorescent fusion proteins, providing a platform generally applicable to biological surfaces. We demonstrate the specificity of signpost origami tags (SPOTs) in vitro as well as their suitability for cryoET of membrane vesicles, enveloped viruses, and the exterior of intact mammalian cells.Reconfigurable T‐junction DNA origami
Angewandte Chemie International Edition Wiley (2020) anie.202006281