Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Jupiter's atmosphere

The incredible and intricate details of Jupiter's atmosphere, showing storms and clouds, that we one day hope to image on other worlds beyond our Solar System. Image: Seán Doran Flickr https://www.flickr.com/photos/seandoran

Credit: NASA / SwRI / MSSS / Gerald Eichstädt / Seán Doran

Prof Jayne Birkby

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Instrumentation
  • Exoplanets and planetary physics

Sub department

  • Astrophysics

Research groups

  • Astronomical instrumentation
  • Exoplanet atmospheres
  • Exoplanets and Stellar Physics
  • Planet formation and dynamics
  • Planetary surfaces
  • Extremely Large Telescope
jayne.birkby@physics.ox.ac.uk
Denys Wilkinson Building, room 761
Personal research page
  • About
  • Books
  • Publications

Fast spin of the young extrasolar planet β Pictoris b

Nature Springer Nature 509:7498 (2014) 63-65

Authors:

Ignas AG Snellen, Bernhard R Brandl, Remco J de Kok, Matteo Brogi, Jayne Birkby, Henriette Schwarz
More details from the publisher
More details

The fast spin-rotation of a young extrasolar planet

(2014)

Authors:

Ignas Snellen, Bernhard Brandl, Remco de Kok, Matteo Brogi, Jayne Birkby, Henriette Schwarz
More details from the publisher

Carbon monoxide and water vapor in the atmosphere of the non-transiting exoplanet HD 179949 b

(2014)

Authors:

M Brogi, RJ de Kok, JL Birkby, H Schwarz, IAG Snellen
More details from the publisher

WTS-2 b: a hot Jupiter orbiting near its tidal destruction radius around a K dwarf

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 440:2 (2014) 1470-1489

Authors:

Jayne Birkby, M Cappetta, P Cruz, J Koppenhoefer, O Ivanyuk, Aj Mustill, St Hodgkin, Dj Pinfield, B Sipőcz, G Kovács, R Saglia, Y Pavlenko, D Barrado, A Bayo, D Campbell, S Catalan, L Fossati, M-C Gálvez-Ortiz, M Kenworthy, J Lillo-Box, El Martín, D Mislis, Ejw de Mooij, Sv Nefs, Iag Snellen, H Stoev, J Zendejas, C del Burgo, J Barnes, N Goulding, Ca Haswell, M Kuznetsov, N Lodieu, F Murgas, E Palle, E Solano, P Steele, R Tata

Abstract:

We report the discovery of WTS-2 b, an unusually close-in 1.02-d hot Jupiter (MP = 1.12MJ, RP = 1.30RJ) orbiting a K2V star, which has a possible gravitationally bound M-dwarf companion at 0.6 arcsec separation contributing ∼20 per cent of the total flux in the observed J-band light curve. The planet is only 1.5 times the separation from its host star at which it would be destroyed by Roche lobe overflow, and has a predicted remaining lifetime of just ∼40 Myr, assuming a tidal dissipation quality factor of Q′⋆=106⁠. Q′⋆ is a key factor in determining how frictional processes within a host star affect the orbital evolution of its companion giant planets, but it is currently poorly constrained by observations. We calculate that the orbital decay of WTS-2 b would correspond to a shift in its transit arrival time of Tshift ∼ 17 s after 15 yr assuming Q′⋆=106⁠. A shift less than this would place a direct observational constraint on the lower limit of Q′⋆ in this system. We also report a correction to the previously published expected Tshift for WASP-18 b, finding that Tshift = 356 s after 10 yr for Q′⋆=106⁠, which is much larger than the estimated 28 s quoted in WASP-18 b discovery paper. We attempted to constrain Q′⋆ via a study of the entire population of known transiting hot Jupiters, but our results were inconclusive, requiring a more detailed treatment of transit survey sensitivities at long periods. We conclude that the most informative and straightforward constraints on Q′⋆ will be obtained by direct observational measurements of the shift in transit arrival times in individual hot Jupiter systems. We show that this is achievable across the mass spectrum of exoplanet host stars within a decade, and will directly probe the effects of stellar interior structure on tidal dissipation.
More details from the publisher
Details from ORA
Details from ArXiV

WTS-2 b: a hot Jupiter orbiting near its tidal destruction radius around a K-dwarf

(2014)

Authors:

JL Birkby, M Cappetta, P Cruz, J Koppenhoefer, O Ivanyuk, AJ Mustill, ST Hodgkin, DJ Pinfield, B Sipőcz, G Kovács, R Saglia, Y Pavlenko, D Barrado, A Bayo, D Campbell, S Catalan, L Fossati, M-C Gálvez-Ortiz, M Kenworthy, J Lillo-Box EL Martín, D Mislis, EJW de Mooij, SV Nefs, IAG Snellen, H Stoev, J Zendejas, C del Burgo, J Barnes, N Goulding, CA Haswell, M Kuznetsov, N Lodieu, F Murgas, E Palle, E Solano, P Steele, R Tata
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 17
  • Page 18
  • Page 19
  • Page 20
  • Current page 21
  • Page 22
  • Page 23
  • Page 24
  • Page 25
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet