Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Crystal structure inside calcium fluoride with an implanted muon
Credit: SJB

Professor Stephen Blundell

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Muons and magnets
Stephen.Blundell@physics.ox.ac.uk
Telephone: 01865 (2)72347
Clarendon Laboratory, room 108
  • About
  • Books
  • Teaching
  • Research
  • Publications

Anomalous temperature evolution of the internal magnetic field distribution in the charge-ordered triangular antiferromagnet AgNiO2

(2007)

Authors:

T Lancaster, SJ Blundell, PJ Baker, ML Brooks, W Hayes, FL Pratt, R Coldea, T Soergel, M Jansen
More details from the publisher

Muon-fluorine entangled states in molecular magnets

(2007)

Authors:

T Lancaster, SJ Blundell, PJ Baker, ML Brooks, W Hayes, FL Pratt, JL Manson, MM Conner, JA Schlueter
More details from the publisher

Dissipation in the superconducting state of κ- (BEDT-TTF)2 Cu (NCS)2

Physical Review B - Condensed Matter and Materials Physics 76:1 (2007)

Authors:

L Yin, MS Nam, JG Analytis, SJ Blundell, A Ardavan, JA Schlueter, T Sasaki

Abstract:

We have studied the interlayer resistivity of the prototypical quasi-two-dimensional organic superconductor κ- (BEDT-TTF)2 Cu (NCS)2 as a function of temperature, current, and magnetic field, within the superconducting state. We find a region of nonzero resistivity whose properties are strongly dependent on magnetic field and current density. There is a crossover to non-Ohmic conduction below a temperature that coincides with the two-dimensional vortex solid-vortex liquid transition. We interpret the behavior in terms of a model of current- and thermally driven phase slips caused by the diffusive motion of the pancake vortices which are weakly coupled in adjacent layers, giving rise to a finite interlayer resistance. © 2007 The American Physical Society.
More details from the publisher

A muon-spin relaxation study of BiMnO3

(2007)

Authors:

T Lancaster, SJ Blundell, PJ Baker, FL Pratt, W Hayes, I Yamada, M Azuma, M Takano
More details from the publisher

Persistence to high temperatures of interlayer coherence in an organic superconductor.

Phys Rev Lett 99:2 (2007) 027004

Authors:

John Singleton, PA Goddard, A Ardavan, AI Coldea, SJ Blundell, RD McDonald, S Tozer, JA Schlueter

Abstract:

The interlayer magnetoresistance rho(zz) of the organic metal kappa-(BEDT-TTF)(2)Cu(NCS)(2) is studied in fields of up to 45 T and at temperatures T from 0.5 to 30 K. The peak in rho(zz) seen in in-plane fields, a definitive signature of interlayer coherence, remains to Ts exceeding the Anderson criterion for incoherent transport by a factor approximately 30. Angle-dependent magnetoresistance oscillations are modeled using an approach based on field-induced quasiparticle paths on a 3D Fermi surface, to yield the T dependence of the scattering rate tau(-1). The results suggest that tau(-1) does not vary strongly over the Fermi surface, and that it has a T(2) dependence due to electron-electron scattering.
More details from the publisher
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 98
  • Page 99
  • Page 100
  • Page 101
  • Current page 102
  • Page 103
  • Page 104
  • Page 105
  • Page 106
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet