Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Crystal structure inside calcium fluoride with an implanted muon
Credit: SJB

Professor Stephen Blundell

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Muons and magnets
Stephen.Blundell@physics.ox.ac.uk
Telephone: 01865 (2)72347
Clarendon Laboratory, room 108
  • About
  • Books
  • Teaching
  • Research
  • Publications

Will spin-relaxation times in molecular magnets permit quantum information processing?

(2006)

Authors:

Arzhang Ardavan, Olivier Rival, John JL Morton, Stephen J Blundell, Alexei M Tyryshkin, Grigore A Timco, Richard EP Winnpenny
More details from the publisher

Multifrequency millimeter wave study of excited energy states in the high-spin molecule Cr10 (OMe) 20 (O2 CCMe3) 10

Physical Review B - Condensed Matter and Materials Physics 73:21 (2006)

Authors:

S Sharmin, A Ardavan, SJ Blundell, O Rival, P Goy, EJL McInnes, DM Low

Abstract:

We report multifrequency high-field millimeter-wave magneto-optical measurements on the high-spin molecule, Cr10 (OMe) 20 (O2 CCMe3) 10. We find that at temperatures above 15 K and at magnetic fields above 6 T, the simple ESR spectrum expected for a single molecule magnet is markedly altered. Our data strongly suggest the presence of a higher spin excited state multiplet lying only about 10 K above the ground state. © 2006 The American Physical Society.
More details from the publisher
More details

Magnetism in the S=1 frustrated antiferromagnet Ge Ni2 O4 studied using implanted muons

Physical Review B - Condensed Matter and Materials Physics 73:18 (2006)

Authors:

T Lancaster, SJ Blundell, D Prabhakaran, PJ Baker, W Hayes, FL Pratt

Abstract:

We present the results of a muon-spin relaxation study of Ge Ni2 O4. We provide further clarification of the two transitions to the antiferromagnetic state and measure the magnetic field dependence of the heat capacity up to 14 T. Both oscillatory and relaxing signals are observed below the lower transition (at temperature TN2) in the muon-decay positron asymmetry spectra, arising from two distinct types of magnetic environment. A possible explanation is suggested in terms of the separate ordering of two magnetic subsystems, one of which does not order fully down to the lowest measured temperature (1.8 K). © 2006 The American Physical Society.
More details from the publisher
More details

Low-Temperature Spin Diffusion in a Highly Ideal S=1/2 Heisenberg Antiferromagnetic Chain Studied by Muon Spin Relaxation

Physical Review Letters 96 (2006) 247203 4pp

Authors:

SJ Blundell, C Baines, F L Pratt, T Lancaster
More details from the publisher
More details
More details

Effect of Irradiation-Induced Disorder on the Conductivity and Critical Temperature of the Organic Superconductor k-(BEDT-TTF)2Cu(SCN)2

Physical Review Letters 96 (2006) 177002 4pp

Authors:

SJ Blundell, A. Ardavan, J.F. Analytis, R.L. Owen
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 102
  • Page 103
  • Page 104
  • Page 105
  • Current page 106
  • Page 107
  • Page 108
  • Page 109
  • Page 110
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet