Emergence, causation and storytelling: condensed matter physics and the limitations of the human mind
Abstract:
The physics of matter in the condensed state is concerned with problems in which the number of constituent particles is vastly greater than can be easily comprehended. The inherent physical limitations of the human mind are fundamental and restrict the way in which we can interact with and learn about the universe. This presents challenges for developing scientific explanations that are met by emergent narratives, concepts and arguments that have a non-trivial relationship to the underlying microphysics. By examining examples within condensed matter physics, and also from cellular automata, I show how such emergent narratives efficiently describe elements of reality.Comparative study of the magnetic properties of La3 Ni2 B′O9 for B′ = Nb, Taor Sb
Abstract:
© 2017 Elsevier Inc. Polycrystalline samples of La 3 Ni 2 NbO 9 and La 3 Ni 2 TaO 9 have been characterised by X-ray and neutron diffraction, electron microscopy, magnetometry and muon spin relaxation (µSR); the latter technique was also applied to La 3 Ni 2 SbO 9 . On the length scale of a neutron diffraction experiment, the six-coordinate sites of the monoclinic perovskite structure are occupied in a 1:1 ordered manner by Ni and a random ⅓Ni/⅔B′ mixture. Electron microscopy demonstrated that this 1:1 ordering is maintained over microscopic distances, although diffuse scattering indicative of short-range ordering on the mixed site was observed. No magnetic Bragg scattering was observed in neutron diffraction patterns collected from La 3 Ni 2 B′O 9 (B′ = Nb or Ta) at 5 K although in each case µSR identified the presence of static spins below 30 K. Magnetometry showed that La 3 Ni 2 NbO 9 behaves as a spin glass below 29 K but significant short-range interactions are present in La 3 Ni 2 TaO 9 below 85 K. The contrasting properties of these compounds are discussed in terms of their microstructure.Comparative study of the magnetic properties of La3Ni2B'O9 for B' = Nb, Ta or Sb
Abstract:
Polycrystalline samples of La3Ni2NbO9 and La3Ni2TaO9 have been characterised by X-ray and neutron diffraction, electron microscopy, magnetometry and muon spin relaxation (µSR); the latter technique was also applied to La3Ni2SbO9. On the length scale of a neutron diffraction experiment, the six-coordinate sites of the monoclinic perovskite structure are occupied in a 1:1 ordered manner by Ni and a random ⅓Ni/⅔B’ mixture. Electron microscopy demonstrated that this 1:1 ordering is maintained over microscopic distances, although diffuse scattering indicative of short-range ordering on the mixed site was observed. No magnetic Bragg scattering was observed in neutron diffraction patterns collected from La3Ni2B’O9 (B’ = Nb or Ta) at 5 K although in each case µSR identified the presence of static spins below 30 K. Magnetometry showed that La3Ni2NbO9 behaves as a spin glass below 29 K but significant short-range interactions are present in La3Ni2TaO9 below 85 K. The contrasting properties of these compounds are discussed in terms of their microstructure.